ADVANCED PRE-PROCESSING STRATEGIES FOR LIGNOCELLULOSIC BIOMASS APPLYING GENETIC ENGINEERING AND NANOTECHNOLOGY TO INCREASE BIOETHANOL YIELD

Pallavi Singh1, Rohit Dimri2, Priya Chamoli3, Saurabh Kumar Jha4
1Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, India-248002
2Department of Life Sciences, Graphic Era University, Dehradun, Uttarakhand, India-248002
3Department of Biotechnology, SET, Sharda University, Greater Noida, Uttar Pradesh, India-201310
Email: pallavisingh.22@gmail.com

Abstract

Production of Biofuel in higher yield by processing lignocellulosic biomass has been limited by the characteristics of conventional Saccharomyces cerevisiae which can utilize lesser number of carbon sources and has very less thermotolerance. Further, complex structure of cellulose and hemicellulose bounded by fibrils of lignin makes it difficult to efficiently pre-treat these feedstocks by acidic and enzymatic hydrolysis. In current review, we discuss the plethora of methodologies which are a boon in production of biofuels from various lignocellulosic raw materials due to advancement in forte of Genome editing technologies, Plant Biotechnology, metabolic engineering and nanobiotechnology. Utilizing metabolically engineering strategies using non conventional microbial species, developing synthetic gene constructs, knocking out genes like COMT, mutating CESA genes using CRISPR Cas9 and RNA interference approaches has been shown to decrease the crystalline structure of Cellulose and enhance the availability of cellulose per unit area, expose lignin to efficient pre-treatment and accelerate conversion rate. Transferring gene encoding alpha amylase and glucoamylase(SWA2 and GAM1) from conventional yeast strains to uncommon strains like H.polymorpha has improvised the efficiency of glucose and xylose utilisation for industrial production of Biofuel. Application of metal oxides of nanomaterials and specifically gold nanoparticles have enhanced the yield of biofuels. Magnetic nanoparticles have been used to embed the enzymes involved in pre-treatment of Lignocellulosic material resulting in better encapsulation and sustainable use of these enzymes over multiple cycles.

Keywords: Biofuel, Microbes, Lignocellulose, Biomass, CRISPR-Cas9, RNA interference, Genome editing.

INTRODUCTION

With the constantly rising world population, there's a manifold increase in pollution with accelerating wear off in the energy sources. About 50% of fossil fuel reserves have been exhausted, raising an urge for an alternative environment-friendly approach that could lead to sustainability in the near future (Godbole et al., 2021; Fayyaz et al., 2020). Any hydrocarbon fuel that is produced from organic matter in a short period of time is considered as biofuel. It may be solid (wood, dried plant materials), liquid (bioethanol and biodiesel) or gaseous (biogas) in nature. Driving factors for inclining towards biofuel as a substitute for depleting some of the main reason for shifting to biofuels are rising prices of oil, emission of the greenhouse gases from fossil fuels and the interest for obtaining fuel from agricultural crops for benefit of farmers.

Recent investigations show that non conventional yeast species have been tremendously beneficial for bioethanol production Biofuels form a sound alternative renewable energy source for these fossil fuels, similarly, biomass becomes an alternative for these fossil resources (Kandel et al., 2018). Moreover, enhancement in genetic engineering and molecular biology tools is also keeping pace with the increasing population, exploring the biochemical pathways in organisms by facilitating an efficient approach of genome editing techniques like Zinc Finger nucleases (ZFNs), RNA interference (RNAi), (CRISPR-Cas9), and Transcription activator-like effector nucleases (TALENs) for the fulfilment of specific need (Jagadevan et al., 2018). RNAi genome editing is a reverse genetic approach that could knock off the expression of the target endogenous gene sequence (silencing) through antisense mechanism i.e. complementary binding of the injected RNA to the respective target mRNA
and thereby suppressing the mRNA’s expression, known as silencing of mRNA (Fayyaz et al., 2020; Fire et al., 1998). Because we have found evidence of RNAi in bacteria, fungi, algae, plants, and animals, we can conclude that this process occurs inside both cells (eukaryotic cells or prokaryotic cells), moreover, RNAi is a naturally occurring common cellular defense mechanism in eukaryotic cells which hinders the process of central dogma at the stage of mRNA so there will be no translation, no protein formation, no expression, and hence no enzyme formation (Rosa et al., 2018). This technique is under research exploitation for biofuel production primarily through standout bioenergy crop-sugarcane and switchgrass, and from the promising feedstock microalgae for a few decades (Fayyaz et al., 2020; Kandel et al., 2018; Baxter et al., 2014).

Among plants, sugarcane (Saccharum spp. hybrids) is a preeminent semi perennial bioenergy grass crop, researched as a major feedstock for global bioethanol production, having lignocellulosic biomass and high productive rate (Kandel et al., 2013). Aside from sugarcane, switchgrass (Panicum virgatum L.), a C4 perennial grass, forms another leading bioenergy crop with high production in biomass and minimum requirement of nutrients (Baxter et al., 2014). Despite the advantages of these bioenergy crops, the major hindrance to the cost-effective cellulosic biofuel production lies in the presence of recalcitrant lignin in the cell wall, which reduces the cellulolytic enzymes and microbial activity by limiting their accessibility to the fermentable walls i.e. cellulose and hemicellulose (Jung et al., 2013; de Souza et al., 2019; Baxter et al., 2014). The expensive thermochemical pretreatment researched for the degradation of the lignin–polysaccharide matrix has not been serving the purpose because it was generating the inhibitory molecules that further hindered the production of ethanol in downstream microbial fermentation (Alvira et al., 2010; Baxter et al., 2014). Thus, despite the advantages primarily, the switchgrass fails to become an economically competent fuel due to the high costs associated with the conversion of lignocellulose (Himmel et al., 2007). RNAi genome editing technique quite to be a boon to solve these issues with the least drawbacks. Conventional yeast species suffer from many limitations. Saccharomyces cerevisiae species utilized in biofuel production suffers from its limitation to work in high temperature and utilize only a limited number of glucose substrates.

1. GENOME EDITING APPROACHES TO IMPROVE PRETREATMENT EFFICIENCY OF LIGNOCELLULOSIC WASTE MATERIALS

Genome editing tools using TALENS and Crispr Cas 9 have been exploited to accelerate the biofuel production by increasing the pre-treatment efficacy on lignocellulosic materials. Synthetic Gene constructs are made to increase saccharification in plant species. Genetic Engineering approaches have been implemented by employing the genome editing capability of CRISPR CAS 9 system for enhancing the thermo tolerance of biofuel producing microbes, making them more resistant towards presence of inhibitors, improving the pretreatment efficacy of cellulases and hemi-cellulases, altering the lignin content in the crops by mutating COMT gene and substantially increasing the tolerance capacity of the microbes towards the biofuel produced in the fermentative pathway.

Key role of using genome editing tools is to increase the resistance of microorganisms towards the toxic compounds produced during the fermentation process like the specific product and growth inhibitors (Tkalec et al., 2014). Significant amount of cellulolytic enzymes and the microbial growth inhibitors get generated during the pre-treatment stages whereby Lignocellulosic biomass undergoes physical, chemical and enzymatic treatments. Growth inhibitors generated are classified in 3 categories- (a) Derivatives of Furan (b) Weak acids (c) Phenolic compounds (Pandey et al., 2011). By increasing the resistance of microbes towards these inhibitors, ethanol production is boosted. CRISPR CAS9 has been used as a genome editing tool to increase the furfural tolerance of S. cerevisiae by disrupting the SSK2 gene in it via integration of the transposon (Ulaganathan et al., 2017).

Barley is frequently used in production of bioethanol. It has been reported that by inducing mutation with the use of CRISPR CAS9 system in the caffeic acid O-methyltransferase 1 (HvCOMT1), the gene which is involved in the biosynthetic pathway for production of lignin by contributing in the formation of molecule syringyl in the lignin fibrils, there has been tremendous improvement in the recovery rate of the fermentable glucose and sugar production by the mutated plant as compared to the wild type Barley. Mutant plant had 14% reduction in the total content of lignin and 34% more bioethanol production was obtained. In the desired environmental conditions, growth of mutant was very much similar to the wild type species but it served as a high yielding feedstock in terms of biofuel generation (Lee et al., 2021).

High temperature during ethanol production has been observed to decrease the growth of ethanol producing microbes. Making these microbes tolerant to high temperatures increases their capability to produce ethanol. Factors associated with thermostolerance are accumulation in the concentration of trehalose and higher number of heat shock proteins have been found to be associated with increased thermostolerance (Kandel et al., 2018). Elevated thermostolerance and accentuated production of ethanol in Z. mobilis and S. cerevisiae was attained by introduction of to single amino acid change in pyruvate kinase and NADH dehydrogenase (Benjaphokee et al., 2012; Benjaphokee et al., 2014). In continuation of the same approach, improvised thermostability was seen in S. cerevisiae on deletion of the gene of Dfg5 glycosyl phosphatidylinositol-anchored membrane protein (Nasution et al., 2015). CRISPR CAS9 has been tremendously exploited for these kind of genome editing approaches.
2. RNA INTERFERENCE APPROACHES

Recent approaches rely on using gene silencing approaches using RNA interference techniques. Lignin has been a recalcitrant in the availability of cellulose and hemicellulose for production of ethanol and hence reducing the amount of lignin exposes a greater of these two polymers. RNA interference mechanism has been successfully exploited for targeted silencing of specific genes. Lignin is a branched polymer of three alcoholic monomers-p-coumaryl, coniferyl and sinapinyl alcohol. Once these subunits are incorporated in the lignin polymer, they are addressed respectively as p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units (Bout et al., 2003). It has been reported that the lignin content present in the grass family is enriched with sufficient amounts of the hydroxycinnamic acids like p-coumarate and ferulate. Predominant role of ferulate has been observed in interconnecting the cell wall polysaccharides of hemicellulose and lignin (Barriere et al., 2004; Fu et al., 2011). In contrast to ferulate, another moiety p-coumarate undergoes esterification in the gamma carbon of sinapoyl alcohol (Grabber et al., 1996). Among monolignol biosynthetic genes, caffeic acid O-methyltransferase (COMT) encodes the enzyme that catalyses O-methylation at the C5 position of 5-hydroxyconiferaldehyde and 5-hydroxyconiferyl alcohol, yielding sinapaldehyde and sinapoyl alcohol, respectively (Grabber et al., 1996; Ralph et al., 1994). Reduction in the expression of the COMT or knockout of COMT in various plants has shown significant decrease in lignin content and enhanced saccharification efficiency. RNA interference mechanism has been applied in sugarcane to generate transgenic sugarcane breeds with high production capacity of ethanol due to higher availability of cellulose and hemicellulose in these plants (Abramson et al., 2010).

In an experiment conducted through RNAi, Caffeic acid O-methyltransferase–suppressed transgenic sugarcane lines were created which marked the convincing reduction in the total lignin and s sub-content thereby increasing the fermentable glucose yield which ultimately contributed to an increase in the biofuel production from the lignocellulosic biomass of sugarcane and switchgrass (Grabber et al., 1996). During the enzymatic hydrolysis, COMT-suppressed sugarcane lines depicted the elevated saccharification efficiency of 19 to 32% in comparison to the wild-type or transgenic controls; 82-91% of suppressed COMT transcript resulted in cut down of lignin by 6-12% and increase in conversion of lignocellulosic biomass to fermentable glucose (Ralph et al., 1994). The field study on the switchgrass, COMT down-regulation lines showed a remarkable reduction in S-lignin content thereby decreasing the S/G monomeric ratio, with 8-15% decrease in total lignin content in comparison to the non-transgenic lines (Louie et al., 2010). The boost in the production of sucrose from the lignocellulosic sugarcane biomass elevates the production of sucrose-derived biofuel from this most paramount biofuel crop.

The above approaches achieve efficiency in saccharification by silencing COMT-gene expression through RNA interference which was responsible for lignin synthesis; while in another study, the sugarcane saccharification efficiency was increased by silencing the BAHD01 gene which resulted in the decrease in biomass recalcitrance (Nasution et al., 2015). Sugarcane transgenic lines formed by the silencing of BAHD01 through RNAi showed no noticeable alteration in total lignin composition but showed a significant decrease in the level of FA(ferulate) and FA-Ara along with an increase in the biomass of fermentable glucose up to 24% in comparison to non-transformed lines (Rai et al., 2016; Harris et al., 2010). This was concluded as BAHD acetyltransferase gene silencing increased the saccharification level of biomass by decreasing the levels of FA in the cell wall resulting in a great contribution in increasing bioethanol production (Bhatia et al., 2017; Carpita and Mc Cann, 2010).

3. REDUCING THE CRYSTALLINITY OF CELLOLUSE AND ENHANCING AVAILABILITY BY GENETIC ENGINEERING APPROACHES

Crystalline structure of Cellulose is due to inherent inter winding of fibres which in turn is attributed to the strong hydrogen binding between them. This strong crystallinity in cellulose causes resistance in breakdown of cellulose by enzymatic hydrolysis methods. So, in order to increase biomass conversion by increasing the susceptibility to pre treatment, crystalline forms of cellulose needs to be target for conversion to Amorphous forms (Abramson et al., 2010). Cellulose synthase (CESA) genes are involved in the synthesis of fibrils of cellulose and their quantity varies across various lignocellulosic residues (Rai et al., 2016). Harris and Trethewey (Harris et al., 2010) had performed an experimentation on Arabidopsis where they had mutated two of the cellulose synthase genes for a shorter timespan. This experimentation showed that the mutant plant demonstrated substantially decreased crystallinity in cellulose structure as compared to the wild type strain. Further, there was an enhancement of more than 40% in the saccharification yield of mutated plant.

Another technique to enhance yield of biofuel from lignocellulosic biomass is by increasing the amount of cellulose present per unit area of biomass (Bhatia et al., 2017). Research has shown the promising role of hexameric rosette complexes CESA in formation of cellulose by plants at the cell membrane (Carpita and Mc Cann, 2010). A targeted strategy for increasing the feedstock specific CESA complexes such as OsCESA 4, 7 and 9 can be targeted for multifold acceleration in the production of cellulose and hence a higher rate of glucose formation leading to enhanced production of biofuels (Chandel et al., 2012).

Discovery of the landmark enzymes involved in depolymerization of hemicellulose and lignin have resulted in production of higher yield of ethanol at economical rates and from novel resources (Banerjee et al., 2010). Several environmental samples such as compost, hot springs, forests wastes land have been investigated to isolate these pioneer enzymes which have high
depolymerization potential. Further insilico tools and big data analytics have been employed to explore these enzymes and fabricate designer enzymes with magnificent hemicellulase and cellulase activities (Voorend et al., 2016).

Another strategy that has revolutionized biofuel production from non conventional yeast includes fabrication and application of “tailored biomass”. Few paradigms of tailored biomass are, using the tailored maize crop which had increased expression of gene GA20-OXIDASE1 (Fan et al., 2016). This gene is involved in maintaining the endogenous concentrations of gibberellic acid. Higher the concentration of gibberellic acid, higher is the saccharification yield of fermentable glucose (Mohapatra et al., 2017). Another case is of when promoter of Arabidopsis cellulose synthase (AtCesA8) gene was applied as inducer in some varieties of rice, the resultant transgenic rice plants was observed to overexpress OsSUS3 gene and this lead to improvisation of the saccharification efficiency of the transgenic rice species (Bonawitz and Chapple, 2010; Grabber, 2005).

4. METABOLIC ENGINEERING STRATEGIES

Metabolic engineering is a promising technique to alter the metabolic or another pathway of any microorganism to increase the synthesized required product quantity of our interest and shorten the pathway or sometimes improve cellular properties of metabolic or another pathway. A compound that is already being produced by a metabolic pathway of a particular microorganism can be overproduced or force the organism to alter certain metabolic pathways so now synthesized a new compound which is normally not synthesized by that metabolic pathway (Stephanopoulos, 2012). This all can be done by the use of Metabolic Engineering, while the information and components of any metabolic or any other pathway are provided by synthetic biology which is utilized by metabolic engineering to optimize the pathway (Granados et al., 2019). Synthetic Biology and Metabolic Engineering in the present scenario where the world is looking for biofuel had very much important because these techniques have application in enhancing bio-fuel production (Rabinovitch-Deere et al., 2013). Application of metabolic engineering in various strains leading to substantial increase in production level of different types of biofuels on various substrates has been given in table 1.

Table 1: Application of metabolic engineering on various microbes to get higher yield of Biofuels as end products.

<table>
<thead>
<tr>
<th>Metabolic engineered strains of microorganisms</th>
<th>Substrate /Carbon source</th>
<th>Biofuel (end product)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synechocystis sp.</td>
<td>Glucose</td>
<td>Isobutanol</td>
<td>(Shabestary and Hudson, 2016; Varman et al., 2013)</td>
</tr>
<tr>
<td>Thermoanaerobacter mathranii</td>
<td>Glucose & glycerol</td>
<td>Ethanol</td>
<td>(Yao et al., 2010)</td>
</tr>
<tr>
<td>Clostridium thermocellum</td>
<td>cellulose</td>
<td>Ethanol & N-Butanol</td>
<td>(Tian et al., 2019)</td>
</tr>
<tr>
<td>Thermoanaerobacterium saccharolyticum</td>
<td>Cellobios</td>
<td>Ethanol</td>
<td>(Hon et al., 2017; Herring et al., 2016)</td>
</tr>
<tr>
<td>Clostridium Tyrobutyricum</td>
<td>glucose, xylose, galactose & sucrose</td>
<td>N-Butanol & Butyrate</td>
<td>(Bao et al., 2020)</td>
</tr>
<tr>
<td>Geobacillus thermoglucosidasius</td>
<td>glucose & cellobios</td>
<td>Ethanol</td>
<td>(Zhou et al., 2016)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Glucose</td>
<td>Isopropanol & N-butanol</td>
<td>(Liu and Khosla, 2010)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Glucose</td>
<td>Isobutanol,1-Butanol,Ethanol,N-Propanol and Isopropanol</td>
<td>(Koppolu and Vasigala, 2016)</td>
</tr>
<tr>
<td>Corynebacterium glutamicum</td>
<td>Glucose and Acetate</td>
<td>3-hydroxypropionic acid</td>
<td>(Chang et al., 2020)</td>
</tr>
<tr>
<td>Clostridium cellulovorans</td>
<td>cellulose</td>
<td>Butanol & Ethanol</td>
<td>(Yang et al., 2015)</td>
</tr>
<tr>
<td>Clostridium autoethanogenum</td>
<td>industrial waste gases</td>
<td>Ethanol</td>
<td>(Liew et al., 2017)</td>
</tr>
<tr>
<td>Clostridium carboxidivorans</td>
<td>syngas and glucose</td>
<td>Ethanol and Butanol</td>
<td>(Cheng et al., 2019)</td>
</tr>
<tr>
<td>Clostridium ljungdahlii</td>
<td>CO2</td>
<td>Butyrate</td>
<td>(Ueki et al., 2014)</td>
</tr>
<tr>
<td>Cupriavidus necator</td>
<td>CO2</td>
<td>Isobutanol and 3-methyl-1-butanol</td>
<td>(Lu et al., 2012)</td>
</tr>
<tr>
<td>Clostridium</td>
<td>cellulose</td>
<td>Isobutanol</td>
<td>(Gaida et al., 2016)</td>
</tr>
</tbody>
</table>
Metallic NPs of gold, platinum, and Pt0.75-Tin0.25 were installed in acid-functionalized Multi-Walled NCTs to create hybrid nano-catalysts, whereas gold NPs were encased in a poly (amidoamine) PAMAM dendrimer structure in another technique. Dendrimer-encapsulated NPs are highly ordered and efficient, according to HR-TEM analysis. Gold, platinum, and Pt0.75-Tin0.25 supported by MWCNTs have been used in biofuel cells, with gold NPs demonstrating greater electrical conductivity, biocompatibility, and catalytic activity than platinum NPs. For ethanol, a mixture of platinum and tin NPs demonstrated strong oxidation activity (Duraiarasan et al., 2016; Aquino Neto et al., 2014). Another study used laser ablation to create gold NPs in an aqueous solution, which showed good catalytic activity even on the 10th cycle, as well as high electrocatalytic efficiency. Even with a small sample size, the LA-Au NPs outperformed (Hebié et al., 2015; Zhang et al., 2010). Magnetic nanoparticles (MNP)s have previously been shown to have the potential to hydrolyze proteins.cell wall of microalgae by immobilising cellulase on MNPs with lipids.

By immobilising cellulase on MNPs and extracting lipids, previous research has proven the potential of using MNPs to hydrolyze the microalgae cell wall Mahmood et al. investigated the effects of adding iron nanoparticles over time in anaerobic digestion and hydrogen generation using water hyacinth, an aquatic weed as substrates (Eichhornia crassipes) (Duraia, 2016). The findings of this research demonstrated that The hydrogen output was increased with the addition of iron nanoparticles produced more ethanol (Ueki, T et al, 2014; Ulaganathan, K. et al, 2017). Magnetic micro ferrites doped with calcium have been found to have a substantial influence in biodiesel production, increasing yield by about 85 percent from soybean cooking oils (Dantas et al., 2017). Sugarcane leaves and MnO2 were used to demonstrate that Bioethanol production was boosted using nanoparticles. It catalysed the process at several points. Sugarcane leaves are converted to bioethanol in this method, and due to their great size, they are an excellent source of bioethanol. MnO2 nanoparticles' surface area is responsible for enzyme binding to their active sites, resulting in improved ethanol synthesis (Cherian et al., 2015). The immobilisation of yeast was discovered to be beneficial. The cells that were grown on magnetic nanoparticles produced more ethanol (Ueki, T et al, 2014; Ulaganathan, K. et al, 2017) .Magnetic nanoparticles (MNP)s have previously been shown to have the potential to hydrolyze proteins.cell wall of microalgae by immobilising cellulase on MNPs with lipids.

Hydrolysis in biodiesel production, increasing yield by about 85 percent from soybean cooking oils (Dantas et al., 2017). Sugarcane leaves and MnO2 were used to demonstrate that Bioethanol production was boosted using nanoparticles. It catalysed the process at several points. Sugarcane leaves are converted to bioethanol in this method, and due to their great size, they are an excellent source of bioethanol. MnO2 nanoparticles' surface area is responsible for enzyme binding to their active sites, resulting in improved ethanol synthesis (Cherian et al., 2015). The immobilisation of yeast was discovered to be beneficial. The cells that were grown on magnetic nanoparticles produced more ethanol (Ueki, T et al, 2014; Ulaganathan, K. et al, 2017) .Magnetic nanoparticles (MNP)s have previously been shown to have the potential to hydrolyze proteins.cell wall of microalgae by immobilising cellulase on MNPs with lipids.

By immobilising cellulase on MNPs and extracting lipids, previous research has proven the potential of using MNPs to hydrolyze the microalgae cell wall Mahmood et al. investigated the effects of adding iron nanoparticles over time in anaerobic digestion and hydrogen generation using water hyacinth, an aquatic weed as substrates (Eichhornia crassipes) (Duraia, 2016). The findings of this research demonstrated that The hydrogen output was increased with the addition of iron nanoparticles, reaching 57 mL/g of hydrogen per gram of iron nanoparticles. Enhancing hydrogen production while utilising Glucose has also been used as a substrate in some research.

Magnetic micro ferrites doped with calcium have been found to have a substantial influence in biodiesel production, increasing yield by about 85 percent from soybean cooking oils (Dantas et al., 2017). Sugarcane leaves and MnO2 were used to demonstrate that Bioethanol production was boosted using nanoparticles. It catalysed the process at several points. Sugarcane leaves are converted to bioethanol in this method, and due to their great size, they are an excellent source of bioethanol. MnO2 nanoparticles' surface area is responsible for enzyme binding to their active sites, resulting in improved ethanol synthesis (Cherian et al., 2015). The immobilisation of yeast was discovered to be beneficial. The cells that were grown on magnetic nanoparticles produced more ethanol (Ueki, T et al, 2014; Ulaganathan, K. et al, 2017) .Magnetic nanoparticles (MNP)s have previously been shown to have the potential to hydrolyze proteins.cell wall of microalgae by immobilising cellulase on MNPs with lipids.

By immobilising cellulase on MNPs and extracting lipids, previous research has proven the potential of using MNPs to hydrolyze the microalgae cell wall Mahmood et al. investigated the effects of adding iron nanoparticles over time in anaerobic digestion and hydrogen generation using water hyacinth, an aquatic weed as substrates (Eichhornia crassipes) (Duraia, 2016). The findings of this research demonstrated that The hydrogen output was increased with the addition of iron nanoparticles, reaching 57 mL/g of hydrogen per gram of iron nanoparticles. Enhancing hydrogen production while utilising Glucose has also been used as a substrate in some research.

Magnetic micro ferrites doped with calcium have been found to have a substantial influence in biodiesel production, increasing yield by about 85 percent from soybean cooking oils (Dantas et al., 2017). Sugarcane leaves and MnO2 were used to demonstrate that Bioethanol production was boosted using nanoparticles. It catalysed the process at several points. Sugarcane leaves are converted to bioethanol in this method, and due to their great size, they are an excellent source of bioethanol. MnO2 nanoparticles' surface area is responsible for enzyme binding to their active sites, resulting in improved ethanol synthesis (Cherian et al., 2015). The immobilisation of yeast was discovered to be beneficial. The cells that were grown on magnetic nanoparticles produced more ethanol (Ueki, T et al, 2014; Ulaganathan, K. et al, 2017) .Magnetic nanoparticles (MNP)s have previously been shown to have the potential to hydrolyze proteins.cell wall of microalgae by immobilising cellulase on MNPs with lipids.

By immobilising cellulase on MNPs and extracting lipids, previous research has proven the potential of using MNPs to hydrolyze the microalgae cell wall Mahmood et al. investigated the effects of adding iron nanoparticles over time in anaerobic digestion and hydrogen generation using water hyacinth, an aquatic weed as substrates (Eichhornia crassipes) (Duraia, 2016). The findings of this research demonstrated that The hydrogen output was increased with the addition of iron nanoparticles, reaching 57 mL/g of hydrogen per gram of iron nanoparticles. Enhancing hydrogen production while utilising Glucose has also been used as a substrate in some research.
the substrate use proficiency by 56% and increment the yield of biohydrogen creation up to 46% (Nagaragan et al., 2017). Gold nanoparticles upgrade the biohydrogen creation because of their little size and enormous surface region which are liable for the limiting of microbial cells to dynamic sites. Magnetic nanoparticles of metals additionally improve the movement of compounds of biohydrogen union hardware which is liable for the development of biohydrogen (Verma et al., 2013; Ramsurn and Gupta 2013).

CONCLUSION

There has been significant improvement in the production of Biofuel by using genome editing approaches by specifically utilizing Crispr Cas9, Talens and RNA interference methodologies. Knocking out of COMT gene and Cesa genes has shown to improve the lignin pretreatment efficacy. Usage of non conventional species and application of metabolic engineering has enhanced their thermostolerance and number of carbohydrate substrates can be effectively converted into bioethanol. Nanotechnology has given a promising hope to increase the enzyme retention rate by using magnetic nanoparticles for immobilization of enzymes like cellulases, xylanases which have crucial role in conversion of lignocellulosic biomass.

REFERENCES

21. Dantas, J.; Leal, E.; Mapossa, A.B.; Cornejo, D.R.; Costa, A.C.F.M. Magnetic nanocatalysts of Ni0.5Zr0.5Fe2O4 doped with Cu and performance evaluation in transesterification reaction for biodiesel production. Fuel 2017, 191, 463–471. [CrossRef]
Applied microbiology and biotechnology, 96(1), 283-297.

