A CRITICAL REVIEW ON BIOANALYTICAL METHOD DEVELOPMENT AND VALIDATION OF FEW ONCOLOGY DRUGS BY USING LC-MS-MS

Konatham Teja Kumar Reddy, Kumaraswamy Gandla, Penke Vijaya Babu, M Vinay Kumar Chakravarthy, Pavuluri Chandrasekhar, Rajnikanth Sagapola

1Department of Pharmacy, University College of Technology, Osmania University Main Rd, Amberpet, Hyderabad, Telangana 500007.
2Department of Pharmaceutical Analysis, Chaitanya (Deemed to be University), Hanumakonda, Telangana, India
3Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India
4KDR Government Polytechnic, Wanaparthy, Wanaparthy (District), Pin code: 509 103Telangana.
5Department of Pharmacy, QIS college of Pharmacy, Vengamukkapalem, ponduru road, Ongole, Prakasam (Dist.), Pin Code: 523272, Andhra Pradesh.
6Pharmaceutical Sciences, Rowan University, glassboro, New Jersey, USA 08028.

Email: drkumaraswamygandla@gmail.com
DOI: 10.47750/pnr.2022.13.501.03

Abstract

A protocol is used to detect and measure biomolecules and metabolites in human and animal tissues using bimolecular methods. The bioanalytical method is effective at determining the number of drugs and metabolites in a biological system. New methods, the validation of existing procedures, and the analysis of samples are one of the prominent tasks for bioanalysis. Above all, a compound can be measured using several methods and identified by different methods of analysis. Drugs may be tested by several extraction techniques, including liquid extraction, solid-phase extraction, and protein precipitation in complex plasma and biological samples. To determine how the environment, matrix, or procedures impact the matrix estimation to the time of the analysis, all steps in the process must be investigated. The more detailed study of drug products can be performed with higher-pressure analytical techniques, such as high-extraction (HPLC), liquid chromatography coupled with double-mass spectrometry (LCMS/MS), and ultra-performance Liquid chromatography (UPLC). Both of them have flaws and strengths. At present, HPLC and GC usually perform biolysis. The parameters are linearity, repeatability, accuracy, selectivity, and continuity. We are proposing the development and validation of bioanalytical systems to assist in the quality assurance of drugs.

Keywords: Bio-analytical, samples extraction techniques, LC-MS/MS, UPLC.

INTRODUCTION

The application of the bioanalytical approach is one of the drug developments. To quantitatively determine different analytes in biological matrices, bioanalytical method validation is essential. Good preparation of samples and hyphenated instruments is crucial in modern bioanalysis. The development of complete bio-analytical methods in pharmaceutical research companies is critical during the drug discovery and development phase (1). Bioanalysis covers identifying and quantifying biological sample analytes (blood, plasma, serum, saliva, urine, feces, skin, hair, organ tissue). In Bioanalysis, small molecules like drugs and metabolites are met, whereas large molecules like proteins and peptides are identified. Bioanalysis is an essential science in many fields of study, such as developing new medicines, forensic testing, doping controls, and the identification of biomarkers for many diseases. Due to the sophistication of the sample matrix, Bioanalysis is challenging [2-11]. There is a well-known need for intense sample preparation before being used in analytical instruments to use complex matrices such as blood, plasma, and urine. Modern bioanalysis requires high-performance sample preparation and hyphenated analytical methods. For a long time in bioanalysis, medicine has been used with liquid (LC) paired to tandem mass spectrometry (MS/MS).

Gemcitabine hydrochloride

Gemcitabine hydrochloride is a β-difluoro-nucleosides, purine antimetabolite (4-amino-1-[(2R, 4R)-5, 3-difluoro-4-
hydroxy-5-(hydroxymethyl) oxolan-2-yl] pyrimidin-2-one (12). A mixture of the diphosphate and the triphosphate nucleosides leading to inhibition in DNA synthesis Gemcitabine (13). It was first approved by the FDA in 1996 and has been shown for breast, ovary, non-small cell lung, and pancreatic cancer (14). Gemcitabine HCl is water-soluble, methanol-soluble, and ethanol and polar organic solvents are virtually insoluble (15). It is white and odorless crystalline and powder with a 168.64°C melting point. Gemcitabine's molecular formula is C9H11F2N3O4, and 263.2 g/mol is molecular (16). It inhibits the growth of tumors by two mechanisms: first through the replacement of one nucleic acid building block directly during DNA replication, leading to tumor cell apoptosis, and second, by irreversibly inactivating the ribonucleotide reductase enzyme, which prevents the development of deoxyribonucleotide and causes cell apoptosis (17). Gemcitabine is also used in pancreatic adenocarcinoma. Patient supervision shows only a small improvement and its efficacy can be restricted by the poor drug administered, particularly for pancreatic adenocarcinoma tumors which are usually hypo-vascular and extensive desmoplastic stroma (18). Gemcitabine has a half-life of 17 minutes (19).

![Fig-1 structure of Gemcitabine hydrochloride](image1)

Dasatinib

Dasatinib is a multi-tyrosine kinase inhibitor. Dasatinib has blocked the expression of BCR-ABL by developing chronic leukemia myeloid and acute lymphoblastic leukemia lines (20). The IUPAC of Dasatinib N-(2-chloro-6-methyl phenyl)-2-[6-[4-(2-hydroxyethyl) piperazin-1-yl]-2-methylpyrimidin-4-yl] amino]-1, 3-thiazole-5-carboxamide with an empirical formula of C22H26ClN7O2S with a molecular weight of 488.01 g.mol^{-1}. Dasatinib is slightly soluble and very poorly soluble in ethanol, methanol, DMSO, acetone, acetonitrile (21). Dasatinib has a melting point of 280°-286°C and white or off-white powder (22). The recommended starting dose of Sprycel is 100 mg given orally once daily for the chronic phase (23). Dasatinib has various strengths such as 20 mg, 50 mg, 70 mg, 80 mg, 100 mg, and 140 mg available on the market (24). Dasatinib inhibits the kinase BCR-ABL, SRC (SRC, LCK, YES, FYN), C-KITA, EPHA2, and pdgfrβ at Nano molar concentrations. Based on modeling studies, Dasatinib is expected to be associated with several ABL kinase conformations (25).

![Fig-2 Structure of Dasatinib](image2)

Ruxolitinib

Ruxolitinib is an active, selective inhibitor indicated for the treatment of moderate-and high-risk myelofibrosis, including primary icelobiosis, post-polyctemia, and post-essential thrombocythemia myelofibrosis. The Food and drug administration (FDA) approved Ruxolitinib in 2011. (26). Ruxolitinib with a (3R)-3-cyclopentyl-3-[4-(7H-pyrrolo [2,3-d] pyrimidin-4-yl) pyrazol-1-yl] propane nitrile molecular formulation, known chemically as (r)-3-3-(4-(7h-pyrrolo [2,3-d]) (27). When JAK2 mutations were detected in myelofibrosis, the emphasis was moved towards selective JAK inhibitors to control diseases. Ruxolitinib is a potent, first-class, and selective FDA-approved inhibitor for myelofibrosis therapy. A phase 1/2 clinical study is currently in progress to evaluate the impact of the Ruxolitinib/nilotinib combination in CML (28). In this case, the cost of the National Health Service, the Italian medicine agency, also approved off-label use of diseases other than covid-19. In particular, for patients with diagnosed covid 19 and severe/severe lung disease, Ruxolitinib is part of the
The compassionate application of AIFA-approved medicines (29). It is soluble with the inert gas in organic solvents such as ethanol, DMSO, and DMF (30).

![Structure of Ruxolitinib](image)

Fig-3 Structure of Ruxolitinib

Sample preparation
In terms of time and the complexity of extracting the desired analyte from the matrix, the analysis's sample preparation phase is often the most important and complicated part. Moreover, there are unique obstacles to each matrix. Urine has high levels of salt; for example, plasma has plenty of phospholipids. Whole blood comprises red, lysed blood cells, and so on. Each analyte and matrix often have different properties, which dictate the type of extraction method to use (31).

The compound detection
A high-performance liquid chromatography detector is a mass spectrometer combined with tandem-mass (HPLC-M S/MS) technology that utilizes both electrospray ionization (ESI) and Air Pressure Chemicals Ionization (APCI) technology (32,33). Recent technological advancement has made material for the packaging of 1.7 μm particles available. UPLC, combined with a high-print pump and MS high-speed acquisition, offers extremely high efficiency, high-resolution capacity for optimum chromatography performance. (34).

Sample preparation goals (35)
- Reduce the impact of matrix
- Remove sample for variability sample
- Reduce the variability of assays
- Enhanced sensitivity
- Samples should be cleaner

Understanding the challenges in method development (36)
- The matrix
- The number of specimens
- Fast procedure
- The quantification number of analyses
- Analyte pharmaceutical profile
- Ratio blood-to-plasma

A drug’s blood to plasma ratio is its proportion to the corresponding plasma volume, i.e., CB/CP, in whole blood (containing red blood cells, RBCs, and plasma) (37).

ECONOMIC ASPECTS OF LARGER MOLECULE DRUG DEVELOPMENT
It takes approximately 10 years and takes about $1 billion to find and produce a new drug. The average annual approval of large molecules is nine and twenty-three small molecules per year. Drug failures at various stages of production and patent expiry periods, primarily for existing organic products, contributed to a pharmaceutical R&D recession, as biologics are expected to reach a market value of $54 billion off-patent in the next five years. Pharmaceutical companies are working hard to reduce their internal capacities and fixed costs, and bioanalytical research the need to make bioanalytical sound tests help
as a key tool for drug discovery and production must be well known, adding to the list of significant pharmaceutical expenditure. (38).

Bioanalysis and the different stages of drug development are generally recognized as central to the pharmacokinetic/Pharmacodynamics characterization of the novel chemical entity since it was discovered. Thus it led to its market authorization. There are a few general ideas in this field that are the foundation of an overarching structure for approaching bioanalysis from the outset and through different phases of drug production (39).

EXTRACTION METHODS

Liquid-Liquid Extraction

It is dependent on the selective extraction of the material from the liquid using the organic immiscible solvent of the analyte found in it. Solvents used include various hydrocarbons, ethylene dichloride, and diethyl acetate. Liquid-liquid extraction must provide differential solubility and then spread two immiscible fluids. The two phases had to be inseparable. In general, there will be two stages, one aqueous and the other containing living organisms. If required, the extraction step can be removed from the matrix.

TABLE -1 SCHEMATIC REPRESENTATION OF LIQUID-LIQUID EXTRACTION

<table>
<thead>
<tr>
<th>Liquid-liquid extraction /solvent extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involve</td>
</tr>
<tr>
<td>↓</td>
</tr>
<tr>
<td>Two immiscible liquids</td>
</tr>
<tr>
<td>↓</td>
</tr>
<tr>
<td>They have different polarity (common extraction solvents are diethyl ether and water)</td>
</tr>
</tbody>
</table>

Solid-Phase Extraction

It is based on the adsorption phenomenon with a particulate material (adsorbent) to which a specific substance is partitioned under a given set of conditions or selective adsorption of an analyte by a solid adsorbent. The Solid-phase Extraction function depends on the choice of adsorption. A target analyte can be extracted and/eluted using a preferred solvent(40).

TABLE-2 SCHEMATIC REPRESENTATION OF SOLID-PHASE EXTRACTION

<table>
<thead>
<tr>
<th>Activation of sorbent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add solvents like MeOH and dichloromethane</td>
</tr>
<tr>
<td>↓</td>
</tr>
<tr>
<td>Removal solvent</td>
</tr>
<tr>
<td>↓</td>
</tr>
<tr>
<td>Application of sorbent</td>
</tr>
<tr>
<td>(drying step) Removal of interfering compounds</td>
</tr>
<tr>
<td>↓</td>
</tr>
<tr>
<td>desorption</td>
</tr>
</tbody>
</table>

Reverse –Phase SPE
The nonpolar (versatile or immobile) phase is brought into contact with a polar (mobile) liquid or solid phase. In the sample, the analyte is mid-to-low polar. They are mainly found in the metal industry but can also be used as lubricants. The use of semi-critical agents such as essential oils, barbiturates, vitamins, and phenols (lc-18 octadecyl bonded for nonpolar to semipolar extraction of antibiotics, benzodiazepines, nutrients, and drugs for use in polar beverages) (41).

Normal phase SPE

A mid-to-nonpolar polar analysis is used in normal-phase SPE (e.g., acetone, chlorinated solvents, and hexane). Under normal circumstances, functionalized silica (LCNH2, NH2, OR CN) is often used(LC- SI, SLC-alumina).

Ion exchange SPE

The exchange of positive/negative ions SPE is beneficial to solutions. Silicones are available with LC- SAX or LC-NH2 connections. The LC-SCX or LC-WCX silica bonded silica cartridges are used to differentiate between cationic and anionic compounds.

Advantages of SPE OVER LLE (42)

Increased recovery and precision

Simplification in terms of automation,

Complete analyte availability

Protein precipitation

In a biological matrix, for example, an analyte, such as glucose, the solubility would be dependent on the primary solvent, e.g., plasma. Methanol and ACN are solvents used. It completely denatures the proteins. The majority of the protein may be precipitated with urea.

To change the PH and organic solvents are added to the sample. Since it’s hydrophobic, it leads to spoiling the protein. The most recent developments are in sampling and tuning.

Salting-out assisted LLE

The organic solution is removed from the mix when salt is added to water. It is commonly regarded as "the salt-induced separation mechanism." nonpolar organic solvents may be extracted by the salting process.

Magnesium sulfate, ammonium sulfate sodium, and calcium sulfate (both dissolved and precipitated) were used in the process for treatment. The salting-out can be done utilizing an assisted LLE process that is inexpensive and can be mechanized (44).

Protein precipitation plates

Protein precipitation is done with a device called Protein precipitation, which allows filtration without subsequent centrifugation and supernatant transfer procedures. Although this series of filters has a membrane depth, they can be fastened to the vacuum system. Many samplers can easily be automated using the filtering plate as a support for the entire plan.

An Acetonitrile solvent is used. Protein precipitation filters should be chosen depending on the vapor pressure, pores, pore size, media, and other possible parameters, including solubility or matrices must be taken into consideration

Solid-phase extraction technique

SPE is similar to liquid chromatography in that it is based on the principle of affinity. (45). SPE is:- recently

Molecularly imprinted polymer Solid-phase extraction

In this method, the combination of template and functional monomers is formed by in-situ by noncovalent interactions such as electrostatic forces, Hydrogen binding, or vanderwaals force molecularly-imprinted polymer SPE (46) polymer

Molecularly imprinted polymer SPE applications: -

Analysis of the environment sample

Analysis of food and samples

Analysis of veterinary sample

Dispersive solid-phase extract

The solvent can be removed from a sample by organic solvents such as magnesium sulfate separation, acetonitrile acetone, magnesium sulfate separation or in conjunction with other salts (such as sodium chloride), and cleaned up by a dispersive solid-phase extract. Traditionally, the dispersive solid-phase extract approach is also used in (44):

Sample tests of pesticides
Analysis of the food sample
Analysis of the environmental sample
Analyzes of cosmetic additives
Recent Dispersive solid-phase applications
Removal of Trace B elements
Pig tissue agonists
B-lactam antibiotic quantitative examination for the kidney tissue
Disposable pipette extraction
It is a dispersible sorbent powder that is free-flowing and contains a standard pipette tip (1/5 ml). As a regular tip, it’s simple to introduce and remove solvent from this scattering absorbent. A dispersible sorbent is positioned loosely between two modified frits (one at the tip's lower end, from which the solvent can be removed, and the other at the tip's top to prevent contamination by pipette solvents). (44).

Micro-extraction by packed sorbent
1 mg sorbent packed into a 100-250 ml syringe and attached as a cartridge between the barrel and needle in micro-extraction using packed sorbent in the form of a syringe Pre-treatment of complex sample sites, including dilution and centrifugation, is included in the micro-extraction by packed sorbent protocol. Dilution with centrifugation is recommended in the ratios of 1:4 and 1:20 for plasma/serum and whole blood samples, respectively. After collecting the sample, a Micro-extraction by packed sorbent syringe can be used to draw it. The analysts are tethered to the sorbent as the sample passes through the Meps cartridge. If the sample is needed before concentration, it can be extracted and expelled multiple times from the same vial to increase the procedure's sensitivity. Following that, the sorbent bed is cleaned. The final step is to use a solvent that is sufficiently soluble to elude analytes. The elution method requires between 20 and 50 milliliters of organic solvent. Elution can be done directly in the injector of the instrument (GC or LC). Meps can be used in bio-matricidal applications on plasma, serum, urine, whole blood, hair, and saliva.

Solid-phase micro-extraction
Solid-phase micro-extraction, which utilizes a fused silica fiber with an adequate stationary point on the outside, is a modern sample preparation technique. Physical calibration of the syringe is included, as is stainless steel micro tubing in the needle. This micro tubing has an organically polymerized fused silica.

Sorptive extraction with a stir bar
The stir bar is equipped with a magnetic glass jacket. The glass jacket contains a given thickness layer of polymer. The test matrix is separated into the extraction process by analytes, as this bar is applied to the prepared sample. The total fiber coated Polydimethylsiloxane volume for solid-phase mining is 0.5 ml (film thickness of 100 mm) but in Stir bar sorptive mining it is 50-250 times greater. There was a 100mm thick film. Higher extraction levels are expected to produce greater extraction efficiency in stir bar-sorptive extraction than in solid-phase micro extraction. The spray extraction bar has two forms of extraction, one of which is SPME compatible, namely direct dipping and extraction of headspace.

On-line solid-phase extraction
Two kinds of online solid-phase columns are available for sale with a restricted access medium [ram] and a turbulent flow chronograph column. Rams are often used in complex, high molecular material matrices to analyze low molecular mass substances (for example, medicine, endogenous substances, and xenobiotics) (most frequently proteins). Columns of Ram HPLC remove the sample smoothing and are appropriate as a pre-column to guide biological, serum, and plasma samples. The mechanisms for the exclusion of hydrophilic, ion exchange, and scale are characterized as ram columns. Ram columns have been included in the multi-component analyses of biology-like antidepressant medicines (44).

Separation
Liquid chromatography is a technique for partitioning a sample mixture into a column and separating it into two phases. The stationary phase within the column is the solvent, while the mobile phase that moves through the column is the solvent. Other chromatographic methods such as chromatography columns are often used in this thin layer chromatography. Detection of drugs in biological liquids using UV visible spectrometry fluorescence spectrometric (47)
TABLE 3: EXTRACTION VALUES OF GEMCITABINE

<table>
<thead>
<tr>
<th>DRUG</th>
<th>MATRIX</th>
<th>LC-COLUMN</th>
<th>SAMPLE PREPARATION</th>
<th>LLOQ</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gemcitabine</td>
<td>Human Plasma</td>
<td>Acquity uplchss 2.1 T3 Column (100A x 150mm, 1.8µm)</td>
<td>Solid –Phase extraction</td>
<td>50,000Pg/ml</td>
<td>48</td>
</tr>
<tr>
<td>Tumor tissue</td>
<td>Hypercarb column (100x2.15µm x 2.1) thermo Fisher Scientific</td>
<td>Liquid-liquid extraction</td>
<td>0.2 ng/ml</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Human plasma</td>
<td>Altima c18 column (2.1x100Mm, 5µm)</td>
<td>Protein Precipitation</td>
<td>0.9 ng/ml</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Dried blood sample</td>
<td>BDS Hypersil c18, (100 x 4.6mm, 5µ)</td>
<td>Protein precipitation</td>
<td>50 ng/ml</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Human peripheral Bloodmononuclear cells</td>
<td>A Biobasic 5µm, 50 x 2.1Mm column</td>
<td>Protein precipitation</td>
<td>25 ng/ml</td>
<td>52</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 4: EXTRACTION VALUES OF DASATINIB

<table>
<thead>
<tr>
<th>DRUG</th>
<th>MATRIX</th>
<th>LC-COLUMN</th>
<th>SAMPLE PREPARATION</th>
<th>LLOQ</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dasatinib</td>
<td>Human plasma</td>
<td>Luna column (50 mm x 2.0 mm)</td>
<td>Solid-phase extraction</td>
<td>0.92ng/ml</td>
<td>53</td>
</tr>
<tr>
<td>Rat plasma</td>
<td>Acquity UPLC BEHTM C18 Analytical column (Waters, Dublin, Ireland), with dimensions 100 x 1.0mm i.d., 1.7µm particle size.</td>
<td>Solid-phase-extraction</td>
<td>1.0ng/ml</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Rat plasma</td>
<td>Reversed-phase C18 column (50 4.6 mm i.d., 3 mm) YMC-Pack ODS-AM</td>
<td>Protein precipitation and liquid-liquid extraction</td>
<td>5.41 ng ml</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Rat plasma</td>
<td>Reversed-phase C18 column (50 4.6 mm i.d., 3 mm) YMC-Pack ODS-AM</td>
<td>Liquid-liquid extraction</td>
<td>1.0ng/ml</td>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 5: EXTRACTION VALUES OF RUXOLITINIB

<table>
<thead>
<tr>
<th>DRUG</th>
<th>MATRIX</th>
<th>COLUMN</th>
<th>SAMPLE PREPARATION</th>
<th>LLOQ</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruxolitinib</td>
<td>Human plasma</td>
<td>Phenomenex, synergi polar RP, 50X 2mm, 4Mm</td>
<td>Liquid-liquid extraction</td>
<td>4.89 ng/ml</td>
<td>57</td>
</tr>
</tbody>
</table>

Bioanalytical method validation

Need for validation of the bioanalytical process

Accurate, reliable findings need to be satisfactorily interpreted by applying well-characterized and validated bioanalytical methods.

Bioanalytical methods and techniques are continuously being changed and improved.

It is also important to stress that each bio-analytical technique's specific characteristics differ from analysis to analysis. For each study, particular requirements for validation can be required.
When testing samples for a given study at more than one site, the bioanalytical methods must be validated at each site and validated in the various areas for interlaboratory reliability must be adequately provided. (58).

Linearity

Linearity evaluates the system’s ability to produce test results that are directly proportional to the sample analysis. Regardless of the process of drug production, the linear range of the procedure must be calculated. During the accuracy analysis, the starting and ending levels must be based on the five concentration levels. (59). The following concentration levels are recommended for evaluation during method validation by ICH guidelines:

Assay: 80% – 120% of concentrations of samples (finished product or pharmaceutical substances). However, this range needs to be based on precise analysis. The linearity should be increased to a minimum of 75-125 percent of the nominal value, and accuracy should be prepared at 80, 100, and 120% of the nominal value.

Contents uniformity: 70 to 130% of the sample concentration is based on the type of dosage unless a more comprehensive, more adequate range is justified; (e.g., metered dose inhalers).

Dissolution method: 20% of the specified range is needed. If dissolution profiles are expected, the linearity range should begin at less than 120 percent of the total drug content recovered during the initial stage.

Impurity detection method: the degree of reporting is 120 percent.

Impurity and testing are combined in this form: a standard of 100 percent is used to quantify and reveal impurity at 120 percent of the test specification.

Accuracy

The accuracy of an analysis method is known as the degree of agreement between the value taken as a typical true or agreed on reference value and the value found. (60-61)

Bias

Bias may be expressed as a percentage deviation from an agreed-upon reference value. The term "trueness" refers to the mean value of a generally accepted reference value for a variety of measurements. It can be described in terms of partiality. Due to the high workload associated with evaluating such a complete sequence, truthfulness is usually not determined during process validation but rather from the results of numerous QCS during routine application (62).

Precision

Precision is a term that refers to the degree to which a set of measurements are compiled under specific conditions from several samples of the same homogeneous sample. Precision is further subdivided into interday, intraday, and different analysts. Precision or repeatability tests have been carried out to assess accuracy in time. The use of different observers, instruments, reagents, and laboratories may have included these controls. (63).

Intermediate precision

In laboratories, the term "intermediate precision" applies to variations: different days, observers, and equipment, for example. (64) The ISO description referred to the expression "intermediate precision m-factor varies" when the m-factor denotes the number of variables that change between determinations (operator, equipment, or time). Occasionally, intermediate precision is referred to as intermediate precision (65) between, between, or between days.

Limit of detection (LOD)

The LOD is fully dependent on the boundary test. The smallest amount of analysis in a sample can be detected but not necessarily quantified under the given experimental conditions. The term "detection" is often used in conjunction with percentages, components per million, or parts per billion.

Limit Of Quantification (LLOQ)

LLOQ is a small sample quantity of study which can be calculated with appropriate precise and accurate measurements. LLOQ based on accuracy can be chosen as the most practical approach. The LLOQ is the lowest sample concentration but can be reliably and accurately quantified. For example, chromatographical methods are used LLOQ only when basic noise is used according to signal and noise ratios. (66).

Robustness

According to the ICH guidelines, a robust analytical procedure is measuring its capacity to maintain its reliability during regular use without being influenced by minor but deliberate differences in process parameters (67-69). The ability to replicate the (analytical) technique in various lab sites or other conditions, and the robustness test, which is an experimental
set-up to determine the robustness of a system, without the incidence of uneven variations between the results achieved, can be identified.

Ruggedness

This covers various analysts, labs, columns, instruments, reagent sources, chemicals, and solvents. The research process's ruggedness is the degree of reproduciveness of test results obtained under many standard test conditions by analyzing the same samples (70).

Recovery study

Although the recovery study cannot be perfect, the scope of the analytes recovered and the internal norm should be consistent, reliable, and reproducible. For the extracted samples' analytics at three concentrations, recovery tests should be performed using unextracted parameters that indicate 100 percent of reconstruction (low, medium, and high). (71)

Matrix effect

The matrix effect is defined as the effect of the co-eluting residual matrix of a biological sample on the ionization of the target. The matrix effect may be caused by organic and inorganic substances such as amines, urea, and carbohydrates. The variance in the coefficients calculated from a six-lot matrix is less than 15% of the normalized matrix factor (mf). This can be accomplished at both low and high concentrations (up to three times the lower LLOQ) and near to the upper quantification limit (ULOQ). The concentration is calculated to have an average coefficient of variation (CV) of less than 15%. (72)

<table>
<thead>
<tr>
<th>S.NO</th>
<th>Parameter</th>
<th>Standard values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Accuracy</td>
<td>Recovery 98-102% with 80,100,120% spiked sample.</td>
</tr>
<tr>
<td>2</td>
<td>Precision</td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>Repeatability</td>
<td></td>
</tr>
<tr>
<td>2b</td>
<td>Intermediate precision</td>
<td>RSD < 2%</td>
</tr>
<tr>
<td>3</td>
<td>Specificity/ selectivity</td>
<td>Interference <0.5%</td>
</tr>
<tr>
<td>4</td>
<td>Detection Limit</td>
<td>S/N > 2 or 3</td>
</tr>
<tr>
<td>5</td>
<td>Quantitation Limit</td>
<td>S/N >10, RSD<20%</td>
</tr>
<tr>
<td>6</td>
<td>Linearity</td>
<td>r > 0.999</td>
</tr>
<tr>
<td>7</td>
<td>Range</td>
<td>80-120%</td>
</tr>
<tr>
<td>8</td>
<td>Stability</td>
<td>>24h or > 12h</td>
</tr>
<tr>
<td>9</td>
<td>Matrix effect</td>
<td>Matrix effect less than 100 indicates suppression matrix effect larger than 100 is assign of matrix enhancement</td>
</tr>
</tbody>
</table>

Stability

The stability of the analyte is a necessary precondition for accurate quantification in the analysis process. The complete validation of a system must also involve stability tests at the various research steps, including pre-analysis storage.

Sustainable.

• Thawstability
• In-processstability
SPECIFIC RECOMMENDATION FOR BIOANALYTICAL METHOD VALIDATION

A simple model is used to accurately explain the concentration/response relationship using appropriate weighting and fitness statistical tests. At least five concentration-level determinations can determine precision and accuracy for the validity of the bioanalytical process (excluding blank samples). Except for LLOQ, the meaning is not more than 20 percent different from the theoretical meaning. The precision of around the medium value, except for the LLOQ not exceeding 20 percent of the CV, shall be no more than 15 percent of the CV. It may also be necessary to use other methods of assessing precision and accuracy that meet these constraints. Re-injection reproducibility should be established to decide if an analysis interrupted by a fault of the device could be restarted.

Documentation for method establishment

- The analytical method's definition should be included in the method's implementation and establishment documents.
- Validation of pure drug criteria and their identity, as well as metabolite and internal standards used in validation studies.
- Experiments were conducted to ensure that they were reliable, valid, recoverable, selective, quantity limit, and calibration curve, and that appropriate data was collected from these tests. (Equations and, if applicable, weighting functions)
- Accuracy and precision of intra-and inter-testing are recorded.
- Where applicable, details about cross-validation data in NDA (new drug approval) submissions.
- Any deviations from the GLPS (as applicable) and justifications for such deviations, standard operating procedures, protocols, or (good laboratory practice)

CONCLUSION

I conclude that bioanalytical methods are commonly used to quantify drugs and metabolites in physiological matrices and that the methods may apply to studies in human clinical pharmacology and nonhuman pharmacology/toxicology. The bioanalytical method used to quantify drugs and their metabolites in biological fluids is important in the evaluation and interpretation of bioequivalence, pharmacokinetic (PK), and toxic kinetic studies. Low detection limits, the ability to produce structural information, the need for minimal sample preparation, and the ability to cover a wide range of analytes with varying polarities are all advantages of LCMS-MS. Despite their high sensitivity and selectivity, LC/MS/MS instruments have some limitations due to matrix-induced variations in ionization efficiencies and ion suppression/enhancement effects caused by biological matrix.

REFERENCES

12. Rahul Singh,1 Ashok K. Shyakla,2 Rajashri Naik,2 and Naeem Shalanstability-indicating HPLC Determination of Gemcitabine in Pharmaceutical
Formulations Hindawi Publishing Corporation International Journal of Pharmaceutical Negative Results Volume 13 Special Issue 1 2022

16. Pawanpreet Kaur* and Baljeet Singh analytical method development and validation of Gemcitabine: a review indo American journal of pharmaceutical sciences coden [USA]: IAJPPB ISSN: 2349-7750

21. Rao KNV* 1, Srivani P 1, Raja MA 1, Banji D 1, Kumar DS Analytical Method Development and Validation of Dasatinib in its Pharmaceutical Dosage Form by UPLC with Forced Deterioration Studies Journal of Pharmaceutical Research Scholars (JPRS) ISSN No: 2277 – 7873

22. Sun Junapudi1, Ramreddy Godela2, Meddi Srinivas1, Sadhana Namadi Method Development and Validation for Simultaneous Estimation of Dasatinib and Lenvatinib by Using RP-HPLC in Pharmaceutical Dosage Form RESEARCH Gate

28. Sridhar Veeraraghavan, c, e, SatheeshmanikandanThappalai a, Srikant Viswanadha, SandhyaranjChennupati a, SanthoshkumarNallaa, ManikantakumarGollaa, SwaroopkumarVakkalanka, ManivannanRangasamy Simultaneous quantification of ruxolitinib and nilotinib in rat plasma by LC-MS/MS: Application to a pharmacokinetic study Journal of Pharmaceutical and Biomedical Analysis 94 (2014) 125–131

30. separations?030047/Cayman chemicals product information Ruxolitinib item number11609

31. Anjana Vaghela, Ashok Patel, Ajay Patel, Amit Vyas, Niles Patel Sample Preparation By Bioanalytical: A review international journal of scientific & technology research volume 5, issue 05, May 2016 ISSN2277-8616

35. sample preparation for bioanalysis 2012 evaluation group co and R @2011 water corporation

36. John Ayrton, ph.d., GlaxoSmithKline quantitative drug analysis and pharmacokinetics make synergistic partnership water the science of what’s possible

37. Wenkui Li, Wenying Jian, and Yunlin Fu Protein Precipitation, Liquid Chromatography with Fluorescence Detection (RP-HPLC-FL) Method to Quantify Ruxolitinib in Plasma Samples, ANALYTICAL LETTERS, ISSN: 0003-2719 (Print) 1532-236X (Online) Journal homepage: https://www.tandfonline.com/loi/lant20

39. Sridhar Veeraraghavan, c, e, SatheeshmanikandanThappalai a, Srikant Viswanadha, SandhyaranjChennupati a, SanthoshkumarNallaa, ManikantakumarGollaa, SwaroopkumarVakkalanka, ManivannanRangasamy Simultaneous quantification of ruxolitinib and nilotinib in rat plasma by LC-MS/MS: Application to a pharmacokinetic study Journal of Pharmaceutical and Biomedical Analysis 94 (2014) 125–131

40. Alessandro Di Michele 1,*, AurelieSchoubben 2,*, Ina Varfaj 2, Alessandro D’Arpino 3, Laura Mercolini 4, RoccoldoSardella 2,*, Maurizio Ricci 2, and Enrico Tiacci Improved Achiral and Chiral HPLC-UV Analysis of Ruxolitinib in Two Different Drug Formulations Separations 2020, 7, 47; doi:10.3390/

41. separations?030047/Cayman chemicals product information Ruxolitinib item number11609

42. Anjana Vaghela, Ashok Patel, Ajay Patel, Amit Vyas, Niles Patel Sample Preparation By Bioanalytical: A review international journal of scientific & technology research volume 5, issue 05, May 2016 ISSN2277-8616

studies [collected2011.12.1]

46. XiaobinGong1, Le Yang2, Feng Zhang2, YoutianLiang1, ShouhongGao2, KeLiu4, Wansheng Chen1. Validated UHPLC-MS/MS assay for the quantitative determination of etoposide, gemcitabine, vinorelbine and their metabolites in lung cancer patients.

47. Tashiga E. Bapiro1, Frances M. Richards1, Moe A. Goldgraben1, Kenneth P. Olive1, Bassetti Madhu1, Kristopher K. Frese1, Natalie Cook1, Michael A. Jacobetz1, Donna-Michelle Smith1, David A. Tuveson2, John R. Grijthys3, Duncan I. Jodrell. A novel method for quantification of gemcitabine and its metabolites 2,2-diXaurodeoxyuridine and gemcitabine triphosphate in tumor tissue by LC-MS/MS: comparison with 19F NMR Cancer Chemother Pharmacol 2011; 68:1243–1253 DOI 10.1007/s00280-011-1613-bspectroscopy

51. Michael T. Furlong,+, Shruti Agrawal b, Dana Hawthornsea, Michael Lagoc, Steve Unger d, Linda Krueger d, Bruce Stouffer A validated LC-MS/MS assay for the simultaneous determination of the anti-leukemic agent dasatinib and two pharmacologically active metabolites in human plasma: Application to a clinical pharmacokinetic study journal of Pharmaceutical and Biomedical Analysis 58 (2012) 130 – 135

52. Hadir M. Maher1,2*, Nourah Z. Alzoman1, Shereen M. Shehata1, Norah O. Abanny Validated UPLC-MS/MS method for the quantification of dasatinib in plasma: Application to pharmacokinetic interaction studies with nutraceuticals in Wistar rats PLoS ONE | https://doi.org/10.1371/journal.pone.0199208 June 14, 2014

53. Prinesh N. Patel, a GananadhamSamanthula, a VerragaravananSridhar, b Rambabu Arla b, Kanthi Kiran V. S. Varanasib and Swaroop Kumar V.V.Sb. Validated LC/MS/MS method for simultaneous quantification of dasatinib and sitagliptin in rat plasma and its application to pharmacokinetic study This journal is © The Royal Society of Chemistry 2014 Anal. Methods, 2014, 6, 433–439

54. clairePresciatt, PharmD, PhD,† Hu-Hien Huynh, PharmD,* Alain Plé,*† Hélène Sauvageon, PharmD,*† Isabelle Madelaine, PharmD, PhD,† Cécile Chougnet, MD,† Christine Le Maigian, MD,‡ SamaiaMourah, PharmD, PhD,‡* and LaurianeGoldwirt, PharmD, PhDDevelopment and Validation of a Simultaneous Quantification Method of Ruxolitinib, Vismodegib, Olaparib, and Pazopanib in Human Plasma Using Liquid Chromatography Coupled With Tandem MassSpectrometry

65. McPolin O (2009) Validation of an analytical method for the pharmaceutical analysis, Mourn training services

