Molecular Characterization Of Non-Fermenting Gram-Negative Bacilli And Its Virulence Markers From Various Clinical Samples In A Tertiary Care Center, South India

Ramprabu. R., Jaya Lakshmi. S.S., Leela. K.V*

1MD Postgraduate student, Department of Microbiology, SRM Medical college hospital & Research center, Kattankulathur, Chengalpattu, Tamil Nadu - 603 203, India.
2Senior Resident, Department of Microbiology, SRM Medical college hospital & Research center, Kattankulathur, Chengalpattu, Tamil Nadu - 603 203, India.
3Professor & Head, Department of Microbiology, SRM Medical college hospital & Research center, Kattankulathur, Chengalpattu, Tamil Nadu - 603 203, India.

*Corresponding Author: - Leela. K.V
DOI: 10.47750/pnr.2022.13.S0

Abstract
Introduction: Non-fermentative Gram-negative bacilli (NFGNB) are an important cause of healthcare-associated infections, and they are primarily opportunistic pathogens.

Aim and objectives: To isolate and characterize the non-fermenting Gram-negative bacilli (NFGNB) from various clinical samples in a tertiary care center. To detect the virulence markers and drug resistance using molecular methods.

Material and methods: Non-fermentative Gram-negative bacilli (NFGNB) from various clinical samples were identified using standard bacteriological identification methods. Conventional PCR for detection of MBLs genes of P. aeruginosa such as blaIMP, blavIM, blanDM and a virulence marker, Exo S gene and also MBL genes of A. baumannii such as blaVIM, blaoXA-23, blaoXA-58, and a virulence marker, OmpA gene.

Results: Out of 104 NFGNB isolates Pseudomonas aeruginosa was the most common bacteria comprising 62% (n=65), followed by Acinetobacter baumannii 25% (n=26), Acinetobacter lwofii 4% (n=4), Pseudomonas flourescens 3% (n=3), Burkholderia cepacia 3% (n=3), Stenotrophomonas maltophilia 1% (n=1), Myroides odoratimimus 1% (n=1), and Rhizobium radiobacter 1% (n=1). The result of P. aeruginosa showed that the blavIM gene was expressed in 25% (n=20), the blanDM gene was expressed in 50% (n=4) and blaoXA was found in 25% (n=20). For A. baumannii, the blanDM gene was expressed in 33% (n=6), blaoXA-23 gene was expressed in 78% (n=14), blaoXA-58 gene was expressed in 50% (n=10) with no expression of blaoXB and blavIM genes.

Conclusion: In our study we report the increased prevalence of MBL genes in P. aeruginosa and A. baumannii. This highlights the importance of accurate identification of MBL producers and judicious use of carbapenems. Early identification and continued surveillance of these multidrug resistant organisms will help to prevent their spread in a hospital environment.

Key Words: NFGNB, P. aeruginosa, A. baumannii, MBL genes.

1. INTRODUCTION

Non-fermentative Gram-negative bacilli (NFGNB), a group of aerobic bacteria, which are non-spore formers. NFGNB utilize carbohydrates only through oxidative fermentation and does not use carbohydrates as main source of energy or either degrade them by other metabolic pathways [1]. The major factors contributing to NFGNB infections are prolonged hospital stay or frequent hospitalization, and longer course of antibiotic therapy. They have emerged as a threat to health care systems with more drug-resistant bacteria [2].

The common NFGNB-causing infections in humans are Pseudomonas aeruginosa, Acinetobacter baumannii, Burkholderia spp, Stenotrophomonas maltophilia etc. Among the NFGNB, nosocomial pathogens such as P. aeruginosa and A. baumannii are commonly associated with severely ill patients and also to patients admitted in intensive care unit [3].

The increased emergence of these organisms as multidrug-resistant organisms contributes to mortality and morbidity among hospitalized patients. In developing countries like India, it is considered a major public health concern [4]. The multidrug resistance is due to various underlying mechanisms. [5]. These resistance bugs interfere in the management of the infections due to it acquire resistance to a different class of antimicrobials [6].
World Health Organization (WHO) has categorized priority level 1 pathogens as carbapenem-resistant *P. aeruginosa* and carbapenem-resistant *A. baumannii* [7]. *Acinetobacter baumannii*, is categorised as red-alert human pathogen, and added to priority list of pathogens for novel antibiotics [8]. Emerging resistance of non fermenting Gram-negative bacilli, especially *P. aeruginosa* and *A. baumannii* may lead to an increase in morbidity & mortality, which further can be controlled by enforcement of the strict antibiotic policy [9]. Various international authorities emphasize, that each and every hospital should have its local antibiotic policy. Since the standard antibiotic sensitivity pattern, vary for every area as NFGNB are ubiquitous. This study will help in the characterization of NFGNB and provide the data on antimicrobial resistance of those isolates, which further helps in formulating local antimicrobial policy.

2. MATERIALS AND METHODS
2.1 Study design
Our study was a prospective study, done in the Dept of Microbiology, SRM Medical College hospital and Research center, Kattankulathur during the period from February 2021 - July 2022. All NFGNB which were isolated and reported from various clinical samples during the study period were included and isolates other than NFGNB were excluded. A total of 104 isolates of NFGNB were received during the study period in the laboratory.

2.2 Ethics approval of research
This study was approved by the Institutional ethical committee with reference number 2361/IEC/2021. Informed written consent was obtained from all the participants of our study.

2.3 Phenotypic identification
The identification of NFGNB was done using standard microbiological methods. It includes Gram staining, motility testing, morphological appearance of the colonies, and a series of biochemical tests. Further, the NFGNB identification was confirmed by the Vitek-2 compact. The antimicrobial susceptibility testing of bacterial isolates was done by the Kirby–Bauer disk diffusion method to detect carbapenem-resistant isolates. Interpretations of antibiotics were made according to the guidelines provided by the Clinical and Laboratory Standards Institute (CLSI 2022) [10]. Carbapenem-resistant bacterial isolates for tested for detection of MBLs production phenotypically using a combination disk diffusion test (CDDT) using imipenem disks (10mg) in combination with EDTA(ethylenediaminetetraacetic acid). An increase in diameter of >7mm is considered as positive [11,12].

2.4 Molecular detection of MBL genes
The conventional PCR was done for the detection of MBLs (metallo beta-lactamases) genes and virulence markers. For *P. aeruginosa*, the MBL genes were *bla*_{IMP}, *bla*_{VIM}, *bla*_{NDM}, and a virulence marker- *Exo S* gene. For *A. baumannii*, the MBL genes *bla*_{IMP}, *bla*_{VIM}, *bla*_{OXA-23}, *bla*_{OXA-58}, and a virulence marker- the *OmpA* gene.

3. RESULTS
All the NFGNB included in our study was isolated and characterized by standard bacteriological methods. Out of 104 NFGNB isolates *Pseudomonas aeruginosa* was the most common bacteria comprising 62% (n=65), followed by *Acinetobacter baumannii* 25% (n=26), *Acinetobacter lwoffi* 4% (n=4), *Pseudomonas flourescens* 3% (n=3), *Burkholderia cepacia* 3% (n=3), *Stenotrophomonas maltophilia* 1% (n=1), *Myroides odoratimimus* 1% (n=1), and *Rhizobium radiobacter* 1% (n=1). The distribution of NFGNB from various clinical samples is illustrated in Figure.1

![Figure 1: Distribution Of NFGNB From Various Clinical Samples](image)

In our study, carbapenem resistance was found in 17% (n=11) and 77% (n=20), of *P. aeruginosa* and *A. baumannii* respectively. Of these 31 isolates, 26 isolates (84%) were found to be MBL producers by the phenotypic method. The production of MBL in *P. aeruginosa* and *A. baumannii* was found to be seen in 73% (8 out of 11 isolates) and 90% (18 out of 20 isolates) respectively.
The MBL producing NFGNB that expresses bla_IMP, bla_VIM, and bla_NDM gene for \textit{P. aeruginosa} and bla_IMP, bla_VIM, bla_NDM, bla_OXA-23, and bla_OXA-51 gene for \textit{A. baumannii} identified by PCR. The result of \textit{P. aeruginosa} showed that the bla_VIM gene was expressed in 25% (n=2), the bla_NDM gene was expressed in 50% (n=4) and bla_IMP was found in 25% (n=2). For \textit{A. baumannii}, the bla_OXA-23 gene was expressed in 78% (n=14), bla_OXA-51 gene was expressed in 56% (n=10) and bla_NDM gene was expressed in 33% (n=6), with no expression of bla_IMP and bla_VIM genes. The distribution of various MBL genes was illustrated in Figure 2.

![Distribution of MBL genes](image)

Figure 2: The Distribution Of Various MBL Genes Of \textit{P. Aeruginosa} And \textit{A. Baumannii}

Virulence markers, ExoS gene for \textit{P. aeruginosa} and OmpA gene for \textit{A. baumannii} were studied which showed the presence of ExoS gene 50% (n=2) and OmpA gene in 56% (n=10) respectively.

4. DISCUSSION

The multidrug resistance of \textit{P. aeruginosa} and \textit{A. baumannii} was due to various underlying mechanisms, among this production of β-lactam hydrolyzing enzymes such as ESBL (extended-spectrum β-lactamases), AmpC producers, and enzymes hydrolyzing carbapenems such as metallo-β-lactamases, oxacillinase plays a major role. The presence of acquired MBL genes such as IMP, VIM, SPM & GIM, indicates the association of multidrug resistance and these genes were present in the mobile genetic elements [13]. The plasmid-mediated resistance contributes to more for the carbapenem hydrolyzing enzyme, which further limits the therapeutic options for its treatment [14].

In our study, we report as increased prevalence of certain NFGNB among various clinical samples in descending order such as of \textit{Pseudomonas aeruginosa} 62% (n=65), followed by \textit{Acinetobacter baumannii} 25% (n=26), \textit{Acinetobacter lwofii} 4% (n=4), \textit{Pseudomonas flourescens} 3% (n=3), \textit{Burkholderia cepacia} 3% (n=3), \textit{Stenotrophomonas maltophilia} 1% (n=1), \textit{Myroides odoratimimus} 1% (n=1), and \textit{Rhizobium radiobacter} 1% (n=1). This was similar to the study by al charrakh et al., were \textit{P. aeruginosa} was a predominant pathogen among various NFGNB [15].

In our study, \textit{P. aeruginosa} showed increased prevalence the bla_NDM gene (50%) followed by bla_VIM gene (25%) and bla_IMP gene (25%), these findings were similar to the study by Namaei et al., bla_NDM gene (40%) followed by bla_VIM gene (29%) and bla_IMP gene (13%) [16,17]. In our study, for \textit{A. baumannii} we observed an increased prevalence of bla_OXA-23 gene(78%) followed by bla_OXA-51 gene(56%) and bla_NDM gene(33%). This findings were similar to the study by Saranya et al., bla_OXA-23 gene followed by bla_NDM gene[18].

5. CONCLUSION

To conclude, we report the increased prevalence of MBL genes in \textit{P. aeruginosa} and \textit{A. baumannii}. This study demonstrated a higher rate of resistance among these isolates especially \textit{Acinetobacter baumannii} with an additional burden of MBL production. This highlights the importance of accurate identification of MBL producers and judicious use of carbapenems. This strongly reflects the need to rapidly promote the implementation of antimicrobial stewardship policies. Early identification and continued surveillanece of these multidrug resistant organisms will help to prevent their spread in a hospital environment.

ACKNOWLEDGMENTS: None

CONFLICTS OF INTEREST: All authors declare no conflicts of interest in this paper

AUTHOR CONTRIBUTIONS: All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Ramprabu.R : Sample collection, analysis, or interpretation of data for the work, drafting the work.

Leela.K.V. & Jaya Lakshmi.S.S.: design of the work, drafting the work or revising it critically for important intellectual content, final approval of the version to be published.

Shanthi, M., Uma Sekar, Multi-drug Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Infections among Hospitalized Patients: Risk Factors and Outcomes. J Assoc Physicians India. 2009 Sep;57:636-645

AL CHARRAKH AH, AL AWADI SJ, Mohammed AS. Detection of metallo-β-lactamase producing Pseudomonas aeruginosa isolated from public and private hospitals in Baghdad, Iraq.

