History Of Malaria

Bhushan Balvir¹, Suhas Tiwaskar², Roshan Umate³

1. B.sc-MLT (medical laboratory technology) JN Medical College, Sawngi (m) Wardha Maharashtra, India. Email Id: bhushanbaa123@gmail.com
2. Assistant Professor, MRIT (Medical Radiology and Imaging Technology), Department of Radiology, School of Allied Health Sciences, Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra, India
3. Research Scientist, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Sawangi, Wardha, Maharashtra.

DOI: 10.47750/pnr.2022.13.S08.18

Abstract

A human victim will get bitten by a female Anopheles mosquito that has been exposed to the malaria-causing Plasmodium parasites. The leading cause of mortality globally is malaria, but in Africa, unfavorable outcomes can be prevented with early detection and timely treatment. The most typical illness in Africa is numerous nations Malaria exists in Asia, which is imported from endemic regions in the industrialized world. Beginning in the second century B.C, China used the plant sweet sagewort to treat malaria. It took a long time for quinine to be used as malaria prophylactic. The global campaign to eradicate Beginning January 1955, malaria struck Croatia, proclaimed 1964 is slated to be a triumph. Organization for World Health oversees a global malaria prevention program with a focus on improving primary healthcare locally, early illness identification, timely treatment, and disease prevention. Compared to five years ago, malaria is not as common now. However, Malaria cases have increased in recent years. Increased significantly around the world. Although the rate of change has slowed, it is still moving in the direction of the WHO's objectives. According to reports, malaria killed 435,000 people and affected 219 million people worldwide in 2017. This burden of illness and death is a more than a century-long process's worldwide study and effort aimed towards enhancing the treatment, diagnosis, and prevention of malaria. The most prevalent illness with the biggest number of cases is malaria. Native examples can be seen in various Asian and African nations. Malaria causes 0.3-2.2% of worldwide deaths, and in tropical areas, it may go up to a height of 11–30% of those who suffer from the most severe illness. According to several studies, the incidence of malaria parasite infection has increased in 2015.

Introduction

More than a century of international work and study has gone into bettering malaria prevention, diagnosis, and treatment, and as a result, the burden of morbidity and death has increased [1]. Malaria is the most prevalent illness in Africa and other Asian nations with the greatest number of native cases. The fatality rate from malaria varies from 0.3-2.2% globally and from 11–30% in areas with tropical climates where severe forms of the disease are present [2]. The incidence of malaria parasite infection has risen since 2015, according to many research [3, 4]. Malaria is brought on via a little protozoon from the family of species of Plasmodium, which contains several subspecies. Some Plasmodium species are responsible for human sickness [2,5]. An intracellular Plasmodium parasite that produces Malaria coloring, the parasites several animals, red blood cells, some and others the tissue. Only one of the 172 identified Plasmadium species may infect people. They include P. Knowles, P. falciparum, and P. vivax. Asia's South-East P.knowlesi, Malaria transmitted via zoonosis has been found. Rarely do other animals human beings [5,6,7,8]. The whole Plasmodium genus that has been discussed causes malaria, a sickness referred to as Malaria (Latin for "poor air," Malus are). Every species shares the same anatomy in biology[9]. The lifespan of Plasmodium, which uses mosquitoes as the vectors and vertebrate hosts as the hosts, contains both sexual and asexual stages that are extremely complicated. The mosquito-vectoring stage of the life cycle of the parasite is sexual. Malaria's intermediate host, humans are where the asexual phase of its life cycle takes place [9,10]. The human malaria virus is only carried by the female Anopheles mosquito. The parasite, which takes the form of sporozoite, enters the human blood after being bitten by an infected female mosquito and after 30 minutes.
reaches the hepatocytes and enters the bloodstream [11]. The initial stage of the asexual development of Plasmodium takes place the erythrocytes follow in the hepatocytes. The whole Plasmodium genus cause rupture of erythrocytes [7,9,12,13]. P. malariae and P. vivax are the most prevalent species in the Americas and Europe, respectively, whereas the most common species P. falciparum is found throughout Africa [14].

Identification of the Malaria

It's thought that outbreaks of malaria have existed since the dawn of humanity. It's by far the prevalent sickness that has caused numerous fatalities and is even suspected of being to blame for major military losses and the disappearance of several nations [15]. Both the Ebers Papyrus and ancient Chinese medical records from 2700 BC contain the earliest mention of malaria [2]. Malaria claimed the life of military tycoon Alexander the Great [15]. Given that George Washington, Cesare Borgia, Albrecht Durer, and Christopher Columbus were all affected by this illness is proof that it existed at all social strata [16,17].

Although malaria and its symptoms were a common occurrence for the ancient people patients will get a temperature that was often linked to many otherworldly abilities & vengeful gods. Thus, it is said that both the Canaanite Zebub (also known as "Beelzebub," or "the master of the fly") and Nergal, an Assyrian-Babylonian god were shown as two-winged in style insects [17]. Hippocrates, who lived in the fourth century BC, associated this illness with the evaporation from wetlands, which when inhaled led to the illness. This description fully disregarded the illness' demonic origins. Up until Laveran found the disease's cause in 1880, this idea persisted [18]. The first time parasites were discovered in the blood of malaria victims was by French military surgeon Laveran, This earned him the Nobel Prize in 1907 [19]. Malaria is regarded as the most pervasive illness in Africa, according to Cartwright and Biddis [14]. A microscopic Plasmodium species protozoon family that includes several subspecies is the cause of malaria [14].

3. The Evolution of Malaria Diagnostic Tests Throughout History

depending on the underlying reason may take years. Recur, malaria can persist for three to 5 If untreated, The duration of malaria might range from 3 to 5 years, depending on the underlying might cause. Due to the persistence of the merozoites in the blood or the hypnozoites in hepatocytes, P. vivax and ovale infections can recur years or months after the original infection. In south-eastern Asia, P. falciparum infection is followed by frequent relapses of vivax malaria. P. falciparum infections, which can result in a high parasitemia, have relapse instances. To develop quickly and then destroy [20, 21] Erythrocytes. children, expectant mothers, and immunocompromised people patients, & those with splenectomies particularly healthy people are prone to malaria infection. individuals who have never had contact with Plasmodium. Clinical observations should always be supported by a malaria laboratory result. The direct methods used to demonstrate malaria include the presence of parasites or parasite components, and covert techniques that demonstrate the presence of antibodies to the causal agents [2,5,22]. Blood-stained Giemsa film is the most accurate way to detect malaria. Sub-Saharan African countries' various regions, this approach is not available because of a shortage of suitable staining supplies and skilled professionals. Detection of infection is possible when there are 10–100 parasites per liter of blood., depending on professional experience and the sensitivity of the approach. Malaria is not ruled out by a negative test in persons who exhibit symptoms; however, if the illness is still suspected. Three more smears should be performed at intervals of 12 to 24 hours [23,24]. Immunofluorescence antibody testing has historically been used to diagnose malaria utilizing serologic tests (IFA). IFA takes a lot of time and is arbitrary. It is useful for vetting potential blood donors in epidemiological investigations. Fluorescence microscopy and trained personnel are also required[23,25,26].

RDT

Immunochromatographic techniques known as RDTs (rapid diagnostic tests) for the detection of blood antigens can confirm the presence of parasite antigens. These tests can be carried out without the use of any electrical apparatus or any specialized knowledge or abilities. The RDTs are currently advised by In all regions of the globe where malaria is endemic, WHO is the primary test of choice. The test's chosen antigens will determine the sensitivity of the antigen test varies. 100 parasites or 50–100 parasites per liter (PfHRP2) per liter for various RDTs [27,28]. In 2007, The first RDT test was approved by the FDA. It's also recommended that microscopic blood analysis be used to corroborate the outcomes of all RDT tests [29]. Antigens identified with the RDT test
are known to linger in the blood after taking an antimalarial therapy, however, the impact of these antigens is altered. Less than 10% should be the false-positive rate [30]. Some RDTs identified results in the eight testing cycles. Infections with low parasite densities (200 parasites/μL) and P. vivax, P. falciparum, or both with low false-positive rates [30]. P. vivax had low false-positive rates, ranging between 5% and 15%. As opposed to that, P. falciparum has False-positive rates of between 3 and 22% [30,31]. If there are few parasites present or if changes in the antigen of the parasite synthesis affect even though most reliable RDTs can identify parasites, they can give false-negative findings. Between 1% and 11% of P. falciparum RDT test results were falsely negative [31,32,33,34]. RDTs With a range of 88 to 99%, their specificity is 89% and their total sensitivity is 82% [35].

PCR- POLYMERASE CHAIN REACTION

S an added technique for finding malaria. In terms of detection Compared to other conventional approaches, this one is both more sensitive and accurate for diagnosing malaria. It has a detection limit of 1 parasite/μL. Nucleic acid from parasites has been detected, according to a PCR test [23,36]. PCR data are usually not accessible in endemic regions soon enough to be helpful when identifying malaria. Nonetheless, in labs that might not have microbiologists on staff. After a diagnosis by microscopy or an RDT test, this approach is particularly effective for identifying Plasmodium species. The monitoring of patients on antimalarial medication can also benefit from PCR [36,37]. Antibodies to agents that cause malaria are shown via deceptive methods. These methods are employed to look at people who may or may not have had such as blood donations, and malaria expectant mothers. The method is founded on an ELISA test or an indirect immunofluorescence assay (IFA). The IFA is sensitive and specific, but it cannot be used on several samples, with judgments being made as a consequence. The ELISA test is more frequently employed to conduct serological tests [26].

A timely and correct Obtaining malaria diagnosis is crucial because providing the sufferer with the best care possible and halting the infection’s transmission within the community.

Historical Treatment of Malaria

Using a plant known as Qinghai (Latin: Artemisia annua), malaria therapy in China dates back to the second century BC [38]. Many Spanish invaders in Peru subsequently, in the 16th century, acquired control of malaria using a cinchona medicine made from the tree's bark. Joseph Bienaime Caventou and Pierre Joseph Pelletier, two French scientists, extracted the substance's active component, quinine, from it in 1820. which had previously been used for a long time in the prevention and treatment of malaria. Artemisinin, a proven antimalarial medication particularly effective used to treat malaria, which was initially produced by a Chinese research team led by Dr. Youyou Tu in 1970, was isolated from the herb Artemisia annua.2015’s Nobel Prize in Physiology or Medicine was to Youyou Tu for making the discovery [39,40,41]. The bulk of artemisinin-related pharmaceuticals now in use are prodrugs, in which hydrolysis activates the metabolite dihydroartemisinin. The radical using a peroxide bond illustrates the antimalarial action of medicines containing artemisinin [42]. The World Health Organization (WHO) recommends employing a combination of artemisinin-based medicines to assure extensive P. falciparum malaria therapy and prevent the formation of drug resistance (ACTs). ACT treatments are used in addition to amodiaquine, sulfadoxine-pyrimethamine, and chloroquine as a consequence of strong opposition [1]. Further study is highly encouraged given the distinct structure of artemisins. The elucidation of pharmacological objectives and strategies, improvement of pharmacokinetic characteristics, & the discovery of novel artemisinin generations to combat resistant Plasmodium strains are all given considerable attention [42].

During his Ph.D. research, the German chemist Othmer Zeidler created the synthetic process for DDT in 1874. DDT was merely a wasted chemical at the time and served no use [43]. Paul Muller in Switzerland in 1939 found that DDT has an insecticide effect. DDT was banned after World War II. was first employed to combat malaria [40]. Due to DDT’s early effectiveness during World War II, other chlorinated hydrocarbons were soon introduced and used extensively to combat diseases spread by mosquitoes [43]. The world’s population was vulnerable to malaria in two-thirds of cases, the between the late Middle Ages and 1940, when DDT first came into use, which posed serious economic, demographic, and health issues [29,40,41,44,45]. Organochlorine DDT is an insecticide that was used to kill insects and was applied as a liquid and a powder. People received DDT injections. between the two World Wars. After the war, DDTs—which kill the vector—proved to be a powerful instrument in the
A vaccine against malaria is now the subject of clinical trials over the years, several initiatives have been made to develop affordable and effective prophylactic antimalarial vaccines. Numerous clinical trials have been finished during the past few years. Clinical trials for novel malaria vaccines are currently being conducted. The P. vivax vaccine is the primary problem, and further research is needed to find alternatives [46,47,48]. Despite years of study into vaccine development, there is still no antimalarial vaccine with an effectiveness of more than 50% [49,50,51]. There are now 48 clinical trials for malaria using the EudraCT methodology thirteen of which are ongoing clinical studies registered in the European Union Clinical Trials Register [52]. Because An intricate creature with a wide range of complications Creating a vaccine is extremely difficult since some life cycles may avoid the immune system. The several stages of the Plasmodium life cycle exhibit antigenic diversity and undergo morphological modifications. proteins from the highly polymorphic Plasmodium parasite repeat these tasks. How the malarial sickness manifests itself also depends on the kind of Plasmodium. Combining different adjuvant types to create formulations tailored to certain antigens might be a more effective result [53,54]. The majority of clinically evaluated medicines were ineffective [5,7,55]. Researchers from all across the world are working to develop an effective vaccine, albeit [56,57,58]. Since medicine Malaria has not been entirely eradicated despite the use of insecticides, insecticide-coated bed nets, and other measures. The search for a vaccination is one of the most significant public health research initiatives, according to the World Health Organization (WHO). The greatest defense against avoiding getting bitten by malaria. insects. To treat Quinine-derived antimalarial drugs are used to treat malaria. vaccines against malaria based on their ability to prevent transmission are divided into three categories: pre-erythrocytic (sporozoite and liver-stage), blood-stage, and main effects [9,54]. The majority of therapeutic medicines are effective against disease-causing blood-borne parasites [59]. Artemisinin The two most important antimalarial medications now in use are quinine from Cinchona and the herb Qinghao (Artemisia annua L, China, 4th century). Plants with a long history of being used as medicines (South America, 17th century). Quinine and artemisinin are two of the most effective antimalarial drugs currently available. [13,39,40]. For travel to endemic areas where malaria is prevalent, doxycycline is recommended. It is commonly used with artesunate or quinine to treat malaria when ACT is unavailable or when artesunate fails to treat severe cases of the disease. One disadvantage of doxycycline is that it cannot be used by children or pregnant women [29]. ACTs are suggested to treat malaria since P. falciparum is widely resistant to chloroquine, with the exception of the first trimester of pregnancy. ACTs combine a treatment that swiftly reduces parasitemia—a derivative of artemisinin—with a second medication that gradually eradicates any residual parasites. The most widely used ACTs are artesunate with sulfadoxine-pyrimethamine, artesunate with amodiaquine, dihydroartemisinin-piperaquine, artesunate with mefloquine, and artesunate with artemether-lumefantrine. The effectiveness of ACTs until recently, resistance to all strains of P. falciparum were high failure rates in several regions of South Asia kept going up. For some circumstances After traditional ACT treatment has failed, A substitute medication that is not based on artemisinin medication. However, given the possibility for the rapid rise of atovaquonLaveran discovered that protozoa, like bacteria, could have a parasitic lifestyle inside of humans and inflict sickness [66]. The resistance is not advised to use often in endemic areas nations. Quinine's effectiveness requires that it be taken alongside another drug, such as doxycycline or clindamycin. Quinine is also poorly tolerated, especially in children, and calls for a protracted course of therapy. Aside from P. vivax infections that require the administration of an ACT because they are chloroquine-resistant, Chloroquine is used to treat uncomplicated cases of vivax, malariae, and ovale malaria. [7,29,60,61,62].

4.1. Europe's malaria

Malaria epidemics were reported in Europe throughout the Roman Empire [63,64] and the 17th century. People at the time were treated for it like any other period experienced up to the 17th century. The treatments used, which included bloodletting, fasting, and bodily purging, were insufficient. The medicinal Quinine found in the bark of...
the Cinchona tree was thought to be the first successful antimalarial drug and was originally utilized by the Peruvian populace [14]. It is thought that the therapy was introduced throughout Europe by Spanish Jesuit missionaries fourth decade of the seventeenth century [65]. The research of a small number of researchers has contributed to the modern understanding of malaria therapy. Some of the researchers are Ronald Ross, Giovanni Battista Grassi, and Alphonse Laveran. In the blood of mosquitoes, Laveran, a military physician in Algeria, identified the malaria-causing organisms in November 1880 and determined that they were a type of protozoa [66] Protozoa were uncovered by Laveran., like bacteria, could have a parasitic lifestyle inside of humans and inflict sickness [66]. In 1898, more precisely, about 20 years later, an Indian military doctor named Ronald Ross made the discovery that infected mosquito saliva may transmit bird malaria, and the same year, an Italian scientist named Giovanni Battista Grassi established that mosquitoes can transmit malaria to people. Additionally, he demonstrated that just one species (Anopheles) of mosquitoes, not all mosquitoes, transmit malaria [17]. Further investigation was made possible by this discovery. In 1955, the global battle against malaria was underway. The program's main focus was using DDT to eliminate insects, & it encompassed parts of South Asia, Southern Europe, the Caribbean, and the United States that were susceptible to the disease. Nevertheless, just three nations in Africa (South Africa, Zimbabwe, and Swaziland). The WHO said that malaria has been completely eliminated in Europe in 1975. instances that had been documented had been brought there by immigrants [67,68].

Global Trends in Malaria

2017 WHO report on malaria demonstrates how challenging the Goal is to achieve two main goals of an international technological strategy for malaria. These include a mortality and morbidity reduction of at least 40% by 2020. The burden of malaria has significantly decreased since 2010, although evidence indicates a slowdown and even a rise in incidence between 2015 and 2017. In 2017, Malaria cases increased from 214 million cases to 219 million cases in 2015 and 239 million cases in 2010. From 1990 to 2017 [1,69] shows the reported malaria cases in the WHO area. Reducing the number of cases in the countries with the highest malaria burdens is the first and most important step towards its global elimination (many in Africa). As a result of the decline in disease-related mortality, there were Global, 435,000 people died from malaria in 2017, down from 451,000 in 2016 and 607,000 in 2010. [1,69] lists the number of malaria-related fatalities from 1990 to 2017. Although progress has been slow overall, certain nations saw a decline in malaria infections in 2017. Thus, India had a 24% decrease in malaria incidence in 2017 compared to 2016. From 37 nations in 2010 to 44 in 2016, and then to 46 in 2017, more countries are reporting less than 10,000 cases of malaria. A further increase from 15 in 2010 to 26 in 2017 [1] more nations had less than 100 indigenous malaria cases. Malaria funding hasn't changed all that much. Globally, US$3.1 billion was spent in 2017 on the prevention and eradication of malaria. That amounted to 47% of what was projected for 2020. The greatest The United States was the sole foreign donor to malaria in 2017 [1,70]. The most widely adopted malaria preventive method globally is using bed nets coated with insecticide (ITNs). Mosquitoes developed resistance to pyrethroids, organochlorines, carbamates, and organophosphates, the four most often used pesticide types, which are widely utilized in all countries where malaria is a problem [1,7,71]. Although the problem of drug abuse serious issue worldwide, the immediate threat is limited and ACT is still a successful treatment in the majority of malaria-endemic nations [1,72]. With 200 million cases (92%) in 2017, Africa continues to have the largest incidence Southeast Asia accounts for 5% of malaria cases, whereas the Eastern Mediterranean accounts for 5%. area (2%). The elimination of The WHO Global Technical Strategy for Malaria aims to eradicate malaria from at least 10 countries with endemic incidence by 2020 [1,72]. Malaria eradication efforts are making poor progress. Indigenous instances are now infrequent in various nations in Latin America, Central Asia, and Europe. The eradication of malaria is more challenging in many Sub-Saharan African nations, and there are signs that progress has slowed down. Another difficulty is getting rid of human and vivax malaria infections [7,72].

Conclusions

In the 1950s, a global drive to eradicate malaria was launched, but it was ultimately unsuccessful owing to logistical obstacles, insecticide-resistant mosquitoes, drug-resistant malaria parasites, and other concerns. Furthermore, The bulk of Africa, where malaria is most common, was left out of the early eradication efforts. Malaria-related morbidity and death are on the rise even though the majority of cases may be effectively treated with current antimalarials. This problem has become one of the most significant issues in the treatment of malaria.
in recent years, is a result of the rising parasite resistance to medications as well as the rising mosquito resistance to insecticides. Resistance to all antimalarial medications has been documented. Thus, investigation of the development and testing of novel Antimalarials and a potential vaccine is being developed right now, mainly because of the unexpectedly large number of individuals moving about (birds, parasites disease vectors insects) from areas where there is a serious and widespread infestation. The fact that malaria has been eradicated in numerous countries is evidence that the current technology may be sufficient. The rise in ACT failure rates and the advent of pesticide resistance among malaria vectors raises concerns that the present approaches of eradicate the disease may not be adequate. As a result, in order to successfully manage and stop the spread of the illness, it will be required to update and modify the guiding principles, methods of strategic control, and malaria treatment regimens.

References

