Artificial Intelligence in Stroke - A Review

Anushri patil1, Dr. Shubhangi patil2

1BPT student, Ravi Nair Physiotherapy college, Datta Meghe Institute of Medical Science (Deemed to be University), Sawangi (Meghe), wardha, Maharashtra, India.
2Professor, Department of Community Physiotherapy, Ravi Nair Physiotherapy college, Datta Meghe Institute of Medical Science (Deemed to be University), Sawangi(Meghe), wardha, Maharashtra, India.

Email: shubhangipatil148@yahoo.in
DOI: 10.47750/pnr.2022.13.S06.414

Abstract

Artificial intelligence is a computer science discipline that can analyse complex medical information. Almost every field of medicine has looked at the capabilities of artificial intelligence systems. Although artificial neural network were the most widely employed logical tool, other artificial intelligent approaches such as transformational computation and hybrid intelligent systems were also applied in a variety of clinical settings. Stroke is a cerebrovascular condition distinguished by the sudden onset of symptoms and scientific findings. Stroke is a main reason of death and morbidity in the world. It can be either ischemic or haemorrhagic, with the former caused by an in-place thrombus or a far-off embolus. The influence of gender on acute ischemic stroke presentation, severity, aetiology, and outcome is becoming more widely recognised. Seizures, conversion illness, migraine headache, and are the most common state that can copy a stroke.

Keywords: stroke, artificial intelligence, stroke imaging

INTRODUCTION

Artificial Intelligence:-

Artificial intelligence is a computer science discipline that can analyze complex medical information. Their capacity to leverage meaningful associations within an information collection may be employed in a range of clinical instances for identification, treatment, and outcome prediction. Almost every field of medicine has looked at the capabilities of artificial intelligence systems. Although artificial neural network were likely the most widely employed logical tool, other systems were also used in a variety of therapeutic settings. In the past, the medical specialty radiology has seen a number of extremely significant and influential technological developments that have influenced how medical imaging is deployed.

Artificial intelligence (AI) is another potential development that will have a significant impact on radiology practice. The origin of some big changes in radiology is traced in this commentary as backdrops to how AI may be incorporated into practice. AI’s potential new capabilities offer exciting opportunities for more efficient and productive use of medical images. An accurate diagnosis is required in the era of diagnostic and therapeutic stroke therapies, which may have negative side effects. There are, however, non-cerebrovascular diseases that exhibit neurological symptoms that mimic strokes (stroke mimics), as well as strokes that exhibit atypical or unusual clinical signs that suggest illnesses besides just strokes (stroke chameleons).

Stroke & stroke imaging:-

To identify them, a detailed history, thorough neurological examination, and appropriate imaging investigations are necessary. Stroke imaging is essential for determining the scope of tissue injury and directing treatment. Artificial intelligence is a swiftly relatively new expertise with diverse fields in critical stroke tomography, including ischemic and haemorrhagic subtypes. Timely screening of Acute stroke necessitates immediate intervention in order to keep morbidity and mortality to a lower limit. Artificial intelligence can support in a variety of aspects of clinical therapy, including infarct or haemorrhage, detection, distribution, classification, detection of large vessel partial occlusion. Starting to emerge artificial intelligence...
techniques, such as deep neural networks, in particular, carry the potential for conducting these imaging-based tasks rapidly and efficiently.(3)

Artificial intelligence use in stroke:-

The goal of this review article is to first characterise AI methods and publicly and commercially accessible sources in stroke imaging, and then to summarise the composition on current AI-guided application for acute stroke, accident and emergency and surveillance.(4) While the majority of attention is currently focused on increasing forecasting ability and giving AI solutions the capacity to compensate for their detection would almost certainly lead to even good clinical applicability and acceptance, AI could be used to accelerate patient management and increase safety by identifying new disease pathogenesis and previously unknown links between imaging and clinical findings predictive of short- and protracted outcomes.

It may also be used to develop theories, laying the groundwork for true deep education and comprehension of acute ischemic stroke.(5) Because of the vast amount of data generated, radiology and neuroradiology in particular are particularly well suited for the application of machine learning. Stroke is a devastating disease for which artificial intelligence neuroimaging plays an important role in clinical management the smart gadget system for tracking tremors and appreciating their phenotypes for enhanced deep brain stimulation results, application assessing fine motor functions, AI combined EEG learning to recognizing epilepsy and psychical non-epileptic seizures, as well as anticipate seizure surgery outcomes.

Recognizing the sequence of complex algorithms in brain imaging classifying cognitive deficits, distinguishes and classifying head trauma phenotypes, smartwatches observing atrial fibrillation to prevent strokes.(6) Artificial intelligence provides systematic and high accuracy technology solutions for the detection of stroke, its severity, and the indicator of functional outcomes.(7) AI future research will have to overcome the challenges of replicating the frequent disordered, variable clinical decision-making order involved in diagnosing stroke.(8) These tools can calculate a Alberta stroke program patients quick CT score on non-contrast CT, CT or process perfusion maps to MR perfusion and evaluate recoverable brain tissue, and CT angiography to sense LVO. Following that, the outcomes are easily forwarded to the suitable ER and stroke team members via email or text alerting on a mobile phone app, with the objective of delivering a rapid onset-to-therapy time in fibrinolytic eligible and MT- eligible patients.(9)

By using DICOM pictures or through a web browser interface extra outcomes can be sent. Several software platforms, the most popular of which are e-stroke suite(brain mix Ltd) and Rapid AI(ischemia view) which are in collaboration with VIZ.ai, and olea sphere (olea medical solution) have been commercialised in recent years.(10)Artificial intelligence

Methods have been discovered to be a hopeful diagnostic method for optimising stroke flow of work. Viz LVO is a clinical instrument that utilizes a deep neural network to detect large vessel occlusion on CTA scans and alerts the doctor within few minutes via a specialised smartphone app. Artificial intelligence is an area of computer science that has been drastic advancement in the last few years, and these AI improvements have major involvement for diagnostic imaging.(11)

AI has also been used to create imaging-guided decisions and predict the future. There are numerous excellent reviews of AI in digital radiology, covering topics such like medical imaging and neuroradiology, stroke scanning, and imaging techniques to imaging-based outcome prediction. The rapid AI system has been shown to be an effective technique for assessing candidates who can advantage from reperfusion therapy. AI systems for stroke imaging are quite well for trying to deal with this vast amount of data. are a controversial subject.

As a result, artificial intelligence(AI) solutions for stroke imaging must be extraordinarily time efficient,(12-22) quick and precise diagnosis of large vessel occlusions(LVOs) in patients with acute ischemic stroke(AIS) using software that is automatically executed could enhance patient process flow in determining on thrombectomy in patients diagnosed. Against this backdrop, combining AI-recognised trends with improved clinical data could result in powerful biomarkers. (23-40) It also has the capability of incorporating health risks obtained from imaging modalities that image the morphology of the plaque.(41)

Summary

Stroke is the major cause of dysfunction and one of the causes of mortality worldwide. One in every four strokes is frequent. Secondary stroke prevention starts with establishing the most likely cause of the stroke. In overall, one of the primary objectives
of stroke prevention is to perfect diagnosis. In the case of stroke due to atrial fibrillation, mechanical valves, or heart embolus, AI is the centrepiece of neuroimaging or diagnosis. In stroke it is very important to diagnose the cause at earliest cause it can lead to complications which can be hard to cure, so artificial intelligence plays a crucial role in stroke diagnosis which helps a lot to physicians.

Conclusion:

Artificial intelligence (AI) not only does it aid in the analysis of health information in disease avoidance, detection, observing patients, and the expansion of new guidelines, but it can also help doctor deal with huge amount of information in a more effective and precise manner. The goal of artificial intelligence (AI) is to duplicate human cognitive functions. It is lead in a standard shift in healthcare, fuelled by the increased accessibility of health maintenance details and the fast advancement of analytics approach. It is opted for faster and more accurate diagnosis of stroke more easily and at fingertips within minute. With less manpower best result are produced for best treatment of stroke. Stroke is very critical disorder in which daily functions are hampered but with AI its makes prognosis better. Various emerging applications are in market for that. Its new technology which is changing healthcare system into smarter systems to deliver good facility to the patient.

REFERENCES


