A Review On Artificial Intelligence For Thyroid Nodule Ultrasound

Muskan.K. Bhatiya¹, Dr. Rashmi Walke²

¹UG SCHOLAR, Ravi Nair Physiotherapy College, Datta Meghe Institute Of Medical Sciences, Sawangi Meghe, Wardha, Maharashtra, India
²Associate Professor Department Of Cardio-Respiratory Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute Of Medical Sciences, Sawangi Meghe, Wardha, Maharashtra, India

Email: muskanbhatiya34@gmail.com
DOI: 10.47750/pnr.2022.13.S06.389

Abstract

Ultrasound is a versatile green imaging modality that is rapidly gaining traction as a first-line imaging tool in a variety of clinical settings, thanks to the ongoing development of sophisticated ultrasonic technology and the well-established Ultrasound-based digital health system. Thyroid nodules are tumors that are mostly benign, but can can be malignant and invasive malignancies. These tumours are curable and become more common as people get older. The size and ultrasound features are used to determine whether or not an ultrasonography-guided biopsy should be performed. The American Thyroid Association’s thyroid nodule recommendations count the number of benign or suspicious ultrasonography findings before recommending biopsy or observation depending on the size of the nodule.

INTRODUCTION

Following the continued evolution of improved ultrasonic technologies and the well-established US-based digital health system, ultrasound (US), a flexible green imaging modality, is developing globally as a first-line imaging approach in different clinical sectors. In fact, qualified physicians in the United States should manually gather and visually review photos for disease diagnosis, identification, and monitoring. Because of the inherent trait of significant operator-dependence from US, diagnostic performance is necessarily lowered. Artificial intelligence (AI) on the other hand excels in automatically recognising complicated patterns and providing quantitative assessments for imaging data, indicating that it has a lot of potential to help physicians get more accurate and repeatable outcomes. We will give a general overview of AI, machine learning (ML), and deep learning (DL) technology in this article. Thyroid nodules are tumors, most of which are benign, but some of which are malignant and invasive cancers. These tumors are treatable and increase in frequency with age. They are more common in women. Nodules are an enlargement of the thyroid gland that can often be felt by your physician at the time. The procedure of choice for assessing thyroid nodules is fine needle aspiration (FNA). It's recommended for nodules larger than 2 cm, even if there's just a remote chance they're cancerous. FNA comes with its own set of dangers and costs. In this study, we used a deep learning algorithm to create an image analysis model and tested it to see if it could identify thyroid nodules from benign FNA findings. In patients with a history of prior radiation treatment to the neck—either near the thyroid gland or near a gland called the thymus (such radiation treatment was popular in past decades, although it is no longer used)—the risk of nodules is high. These nodules tend to develop long after the treatment.1-15

Limitations – When examining thyroid nodules, ultrasound is a convenient and reliable diagnostic tool. In most cases, one representative image is sufficient to determine the nature of the nodule. As a result, we are a good fit for the DL concept. Regardless, there is a lot of intra- and inter-reader variability in us image collection, so there's still a potential that a thyroid nodule capture image won't show the entire lesion. Thyroid nodule DL analysis is completely based on US findings.16-25

Indications - Ultrasounds can offer your doctor with high-resolution images of your organs, which can help them better understand your overall health. If your doctor notices any unusual swelling, discomfort, or infections, they may order an ultrasound to rule out any underlying problems that could be causing these symptoms. If your doctor needs to take a sample of your thyroid or adjacent tissues to rule out any existing abnormalities, ultrasounds may be utilised.26-35
Review

The use of DL in the diagnosis of thyroid nodules is still in the early stages of development. There are various difficulties in terms of collecting US pictures efficiently, determining a reasonable threshold for forecasting malignancy, and properly including indeterminate nodules in the dataset. Although the currently developed DL cannot completely replace normal practice in the identification of thyroid nodules, it may one day be used as a supplementary tool to aid in the decision-making process for biopsy and surgery. There are certain limitations to this research. First, we thought Bethesda Category V and VI were cancerous. However, based on surgical histology, group V and even category VI may be "truly benign" in some circumstances. Although no category V or VI nodules in this study were found to be benign after surgery (data not shown), it should be noted that the proportion of Bethesda category V and VI nodules that are malignant differs between institutes. Second, the DLA diagnosed certain FNA benign nodules as cancerous (low specificity). Image analysis via DLA is frequently found to have lower specificity. The DLA in this investigation detected malignant features of nodules sensitively and classed them as malignant if any of those traits were suspicious, according to the findings31-34.

Discussion

According to the proportion of malignancy, the algorithm's sensitivity ranged from 91.2 percent to 100 percent, and its NPV ranged from 90.3 percent to 100 percent for the external test set. Based on the premise that the prevalence of malignancy (Bethesda Category V/VI) in the external test set was similar to the 9.3 percent reported in literature, the DLA's sensitivity and NPV were 100 percent in this investigation. In a prior study, the diagnosis accuracy of image analysis technology and radiologists was compared. The study used radiologists' diagnoses to train a software that can only predict US category, not cytologic or histologic results. Because FNA of the nodules would still be required if appropriate, the clinical value of such models may be restricted. In contrast, because it was trained on cytologic or histologic test results, we built a DLA that has clinical significance in terms of FNA decision-making. The DLA's strong NPV in this study implies that it could help clinicians make better decisions and avoid unnecessary FNA.

CONCLUSION

We created a DLA to analyse thyroid ultrasound pictures. Although highly experienced physicians outperform DLA in this trial, the DLA's sensitivity and NPV are promising. In the near future, using artificial intelligence to evaluate thyroid nodules could help clinicians reduce the amount of needless FNAs. After their usefulness has been shown in bigger series, such image analysis models are likely to be widely utilised.

REFERENCES

8. “[No Title Found].” INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH 12, no. 1 (n.d.).