The effect of pressure algometer in pain threshold

Alfiza khan1, Dr. Deepali Patil2

1UG SCHOLOR, Department of Musculoskeletal physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Medical Sciences, Sawangi, Wardha, Maharashtra, India.

2Associate professor and HOD, Department of Musculoskeletal Physiotherapy, Datta Meghe Institute of Medical Sciences, Sawangi Meghe, Wardha, Maharashtra, India.

Email: dvjphysio@gmail.com
DOI: 10.47750/pnr.2022.13.S06.373

Abstract

Algometers are instruments that measure actual pressure and/or pressure that causing a pressure pain threshold to be surpassed. In pressure pain threshold studies, it has been discovered that the rate at which mechanical force is applied should be steady in order to offer the maximum precision. The accuracy and composite reliability of an algometer (1000-Hz sampling rate) were tested in this study by manually applying force to a maximum force (500-Hz sampling rate). The pressure level is the lowest amount of force (pressure) that causes discomfort. The pressures threshold metre (PTM) is indeed a strength measure with a 1cm2 surface circular polymer applicator surfaces rubber disc, as well as the maximum stress measurement was examined using SEM and t-test. This device has proved beneficial in the treatment of deep muscular soreness, trigger points, fibrositis, and myalgia patches. PTM can identify arthritis activity as well as measure reduction in pain.

INTRODUCTION

A pressure algometer is a tool that may be used to determine the stress and/or strength that is generating a pressure pain tolerance. Disability caused by musculoskeletal discomfort is a regular phenomenon with clinical and economic implications (1). Pain measurement becomes critical, and force algometry has shown beneficial for detecting tender regions and trigger points, as well as assessing therapy outcomes (1, 10, 11, 13–15, 18, 19). However noted that the reproducibility of sensory modality threshold measures may be lower than being recorded in most investigations (1). The pressure algometer was used for palpation, calculating pressure pain thresholds (PPTs), and contrasting its characteristics to that of a commercially available stress algometer (2). In this preliminary investigation, the force pain sensitivity and suprathreshold pressure pain tolerance were measured using a newly invented electronically driven algometer and contrasted to existing techniques (3). The algometer is a device used to measure somatosensory anomalies such as inflammatory-mediated pressure neuropathic pain. Pain measuring is required for therapeutic and pain assessment purposes. Sensitivity is one of the most prevalent side symptoms of muscular skeletal failure, and determining its severity is crucial in clinical diagnosis. The Pressure Pain Threshold (PPT) is the location during which a non-painful force sensory input converts into a painful pressure perception. Pressure algometry (PA) is a methodology was using to methodically analyse this PPT. This method of causing extreme experimental pain has been well and well-validated (4). The pressure pain threshold (PPT), or the lowest sensory .The frequency with which a person experiences pain, was investigated in 30 people who suffer from chronic involuntary pain as in shoulder and arm region. Using a pressure algometer, 14 trigger sites along both upper and lower limbs were studied. Pressure algometer (PA) (dolorimetry) is a technique that quantify the examiner's subjective experience of tenderness by measuring pressure pain threshold (PPT). The use of pressure algometers is becoming more common in both clinical pain treatment and human research. This approach is used for statistical identification of painful disorders such as myofascial pain (MP), fibromyalgia (FMS), and inflammation-related discomfort.

Pressure pain threshold assessment has also been useful in documenting therapy outcomes: The pressure algometer identified and analysed the immediate effects of treatment, specifically varied injection procedures. The effectiveness of which was before blocks, which anaesthetize the sensitive, tender areas to be injected, can be monitored, and most importantly, the long-term outcome of treatment modalities, particularly needling and penetration of tender spots (TSs), trigger points (TRPS), and local pathology, which are the instantaneous cause of suffering, can be successfully documented by pressure algometer. Aside from
therapeutic uses, pressure algometers were used in research, such as the investigation of pathophysiological mechanisms implicated in musculoskeletal pain disorders.(5-16)

DISCUSSION

The analysis is focused on the pathologic conditions and research of the pressure algometer. Patients with orofacial pain in headache, pain sensitivity tolerance across the cranio-cervical region, knee osteoarthritis, fibromyalgia syndrome, and the like are examples. This comprehensive study gives PPT value ranges for healthy controls, migraine, TTH, and CEH in the cranio-cervical area. This is significant considering the (17-25)

PPT inspection point explanations ranged from exceedingly accurate and reproducible to a basic enumeration of locations in the body (For example, the entire tendon without specifying the particular place). The variety of measures, durations, and effectiveness of each assessment varied between investigations.

At each visit, the number of measures ranged from one to five. The time between repetitions ranged from five seconds to fifteen minutes. Some research stated that the initial assessment was invalid due to its greater physical quantity and did not apply it for statistical evaluation, but others calculated rough approximations from all data.(26-30)

Therapeutic massage, according to moderate information, raised specific pain severity tolerances in musculoskeletal injuries immediately after the treatment. There was no continuous result on distant location force tolerance level. Thermal pain threshold levels did not change significantly much. The clinical significance among these outcomes remains inconsistent and so undetermined(8).

Generally, studies consistently indicate movement as an appropriate methodology of pain management. Clinical researchers can utilise this knowledge to find the ideal method and dose of movement to give maximum therapeutic benefit to patients with knee OA when exact pathophysiology of Osteoarthritis pain and also how movement may block particular pain signals to the brain are known(31-32)

To the best of our knowledge, this may be the first study following demonstrate variations in physiological changes among RA patients compared to controls to immediate, conventional, non-tissue-damaging, unpleasant stimuli(10).

Conclusions

Using pressure algometry, 14 trigger locations across both upper and lower limbs were studied. There were eight paravertebral sites assessed, and along with six locations around the shoulder and arm. Every place was examined twice. One observer analysed the patients.

For PPT assessments, digital pressure algometry demonstrated excellent interpersonal and inter consistency. The suggested approach for diagnosing myofascial trigger points has a pretty good accuracy but also a very reduced specificity. Pressure pain tolerance may be an order to provide value in analysing the effectiveness of therapies for Fascial pain disease and musculoskeletal problems based on a comparison of multiple study results, given that the precise conventional pain perception tolerances of . However, pressure pain threshold is not believed to be a useful technique for diagnosing or screening for myofascial trigger points.

Furthermore, it is expected that the pressure pain threshold cut-off parameters gathered from the study would be beneficial as fundamental information for future pressure algometer studies and treatment application.
