COMPARISON OF MAXILLARY AND MANDIBULAR ARCH FORM IN CLASS I, CLASS II AND CLASS III PATIENTS REPORTING FOR TREATMENT.

1Inchara, R, 2A Sumathi Felicita, 3Arya S Prasad*
1Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Saveetha University Chennai.
2Professor Department of Orthodontics Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Saveetha University Chennai.
3*Assistant Professor, Department of Orthodontics Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Saveetha University Chennai.
DOI: 10.47750/pnr.2022.13.S06.351

Abstract

Background: - Archforms play an important role in orthodontic diagnosis and treatment planning. Limitations for tooth movement, especially for incisor retraction arise from the basal bone where teeth are rooted. If teeth move excessively over the alveolar bone, periodontal complications and unstable treatment effects, even the tooth exfoliation may occur. The aim of this study is to compare the maxillary and mandibular arch forms of class I, class II, class III patients reporting for treatment in Saveetha dental college and hospitals, Chennai, Tamil nadu from June 2019 to January 2021.

Materials and method: - It is a single centered retrospective study conducted in a private dental institution, Chennai. The data of patients reporting was collected from the dental hospital management system and the arch form was compared. Ethical clearance for this study was obtained from the Institutional review board. Statistical analysis was obtained using SPSS version 20.

Results:-The results showed that there is no significant correlation in maxillary and mandibular arch forms among Angle’s Class I, Class II, and Class III malocclusion. Class I occlusal relationship was the most common class of malocclusion followed by Class II malocclusion. Ovoid arch was more common in class I, Class II, Class III malocclusion.

Conclusion: - Within the study limits, it was concluded that Class I occlusal relationship was the most common class of malocclusion followed by Class II. Ovoid arch was more common in class I, Class II, Class III malocclusion followed by v-shaped and square arch forms in class I and class III and V-shaped arch was more prominent in class II patients.

Key words: Arch form; class I malocclusion; class II malocclusion; class III malocclusion; innovative technology; novel method.

Introduction

The dental arch form evaluation has become an important part of orthodontic treatment planning. It is well known that a change in intercanine width, during orthodontic therapy, may represent a predictor of dental relapse and, for these reasons, it is fundamental to maintain the original arch dimension by choosing the right arch wire form during the treatment.(1) Moreover, a diversity of dental arch shapes and dimensions in different ethnic groups was observed and several authors proposed geometric models in order to identify the mean configuration of the clinical arch shapes in different populations.(2)

It has been recognized that Angle’s classes of malocclusion show a high variability in the shape and size of arch form. Dental arch form is a reflection of the underlying bone morphology.(3) Stability of arch form is one of the most desirable goals of orthodontics, yet unfortunately it is the least understood goal. Arch form tends to return to its original form so the patient’s existing arch form appears to be the best guide to the future arch form and stability.(4) Previous
knowledge suggests that a correlation exists between craniofacial structures, arch forms and dimensions. However, the strength of associations is not clearly reported in the literature. Individual variations are also not uncommon. (5) Most of the studies conducted on arch form are focused on finding a single shape in perfect conformity for the dental arch of a specific sample. (6) Despite individual differences, when the ethical variations are taken into consideration; the application of a single ideal arch form for every individual could affect the post treatment functional, esthetic and stable arch form outcomes. (7)

Among the various types of malocclusion found in human population Angle’s class III malocclusion is one of the least common malocclusions seen in day to day practice. (8) Even though the prevalence of class III is extremely low, the treatment planning for class III seems to be a great challenge for dentists. (8, 9) Class III malocclusion is found in 0 to 26.7% in different populations. In class III malocclusion, there is an anteroposterior discrepancy between the maxillary and mandibular dentitions which may or may not be accompanied with skeletal discrepancy. (10) The treatment aspect of class III malocclusion focuses on the correction of skeletal discrepancy, dental compensation, reducing reverse overjet and arch forms to name a few. (11)

The arch form before the start of treatment is fundamental in orthodontic treatment planning. The pretreatment arch form is adjusted to the skeletal base and soft tissues which might be determined by genetic and environmental factors. All the changes during pretreatment should be assessed before amending the arch form during treatment to determine potential instability and quantized. Therefore, the aim of the current study is to compare maxillary and mandibular arch forms in class I, class II and class III patients reporting for treatment in Saveetha dental college and hospitals. Our team has extensive knowledge and research experience that has translate into high quality publications (12), (13), (14), (15), (16), (17), (18), (19), (20), (21), (22), (23), (24–28), (29), (30), (31)

Materials and Method

It is a single centered retrospective study conducted in a private dental institution, in Chennai. The data was collected from the dental hospital management system. Ethical clearance for this study was obtained from the Institutional review board.

The data included a varied population predominantly South Indian population. All the details of the patients from June 2019 to January 2021 were collected. Total of 8168 patient details were obtained out of which 7618 patients had class I malocclusion, 442 patients with class II malocclusion, and 96 patients with class III malocclusion. All data were cross verified by another examiner. The internal validity included cases diagnosed as per selection criteria, medical history, chief complaints and clinical findings. Inclusion criteria include patients above the age of 18 years and patients who reported for orthodontic treatment. Exclusion criteria include presence of systemic disorders and pediatric patients.

The data collected was tabulated under following parameters: Age, gender, structural abnormalities. The arch form was determined by using photographs from the patient record management system. The independent variable includes age and dependent variables include dental malocclusion and arch form. The data analysis was performed using SPSS software of version 21. The chi square test was used to compare the data and check for the distribution at 0.05 level of significance for effect of statistical significance.

Results and Discussion

In this study the results show that ovoid arch is more prominent in all Class I, Class II and Class III malocclusion. Figure 1 shows arch shape in class I malocclusion patients. Maxillary and mandibular arch forms were determined together. Out of the 7605 patients with class I malocclusion, 6097 patients (80.04%) had ovoid arch form, 15 patients (0.20%) had v-shaped arch, 788 patients (10.35%) had square shaped arch, 653 patients (8.57%) had tapered, 49 patients (0.64%) had narrow tapering arch referring to the Ricketts pentamorphic arch for templates (32). Figure 2 shows arch shape in class II malocclusion patients. Out of 442 patients 388 patients (87.98%) had U-Shaped arch, 29
patients (6.58%) had V-Shaped arch, 13 patients (2.95%) had square shaped arch, 10 patients (2.27%) had oval shaped arch, 1 patient (0.23%) had tapering arch. Figure 3 shows arch shape in class III patients. Out of 96 patients, 89 patients (93.68%) had U-shaped arch, 3 patients (3.16%) had V-shaped arch, 3 patients (3.16%) had oval shaped arch. There was no significant correlation in maxillary and mandibular arch shape among malocclusion of Angle Class I, Class II, and Class III (Figure 4)(Table 1).

Figure 1 - Represents arch shape in patients with class I malocclusion patients. The x-axis represents arch shape and the y-axis represents the number of patients. Green colour represents ‘Ovoid’ (80.04%) arch, pink colour represents V-Shaped (0.20%) arch, blue colour represents ‘Square shaped’ (10.35%), red colour represents ‘Tapering’ (8.57%) arch, light blue represents ‘Narrow tapering’ (0.64%).

Figure 2 - Represents arch shape in patients with class II malocclusion patients. The x-axis represents arch shape and the y-axis represents the number of patients. Green colour represents ‘Ovoid’ (87.98%) arch, pink colour represents V-Shaped (6.58%) arch, blue colour represents ‘Square shaped’ (2.95%) arch, red colour represents ‘Tapering’ (2.27%) arch, light blue represents ‘Narrow tapering’ (0.23%) arch.
Arya S Prasad, et al. : COMPARISON OF MAXILLARY AND MANDIBULAR ARCH FORM IN CLASS I, CLASS II AND CLASS III PATIENTS REPORTING FOR TREATMENT

Figure 3 - Represents arch shape in patients with class II malocclusion patients. The x-axis represents arch shape and the y-axis represents the number of patients. Green colour represents ‘Ovoid’(93.68%) arch, pink colour represents V-Shaped (3.16%) arch, blue colour represents ‘tapering’(3.16%) arch.

Figure 4 - Represents arch shape in patients with Dental malocclusion patients. The x-axis represents arch shape and the y-axis represents the number of patients. Blue colour represents class I malocclusion, green colour represents class II malocclusion and light brown represents class III malocclusion.

<table>
<thead>
<tr>
<th>DENTAL MALOCCLUSION</th>
<th>ARCH FORM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ovoid</td>
<td>V-shaped</td>
</tr>
<tr>
<td>CLASS I</td>
<td>6097</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DENTAL MALOCCLUSION</th>
<th>ARCH FORM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ovoid</td>
<td>V-shaped</td>
</tr>
<tr>
<td>CLASS I</td>
<td>6097</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CLASS II</th>
<th>CLASS III</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>388</td>
<td>89</td>
<td>6574</td>
</tr>
<tr>
<td>V</td>
<td>29</td>
<td>3</td>
<td>47</td>
</tr>
<tr>
<td>O</td>
<td>13</td>
<td>3</td>
<td>804</td>
</tr>
<tr>
<td>H</td>
<td>11</td>
<td>1</td>
<td>665</td>
</tr>
<tr>
<td>V-H</td>
<td>1</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>P-VALUE</td>
<td>0.000</td>
<td></td>
<td>8155</td>
</tr>
</tbody>
</table>

Table 1 - Frequency of Number of patients and arch form.

Previous studies that compared arch forms in adult subjects having Angle’s Class I normal occlusions and Class III malocclusions have left unanswered questions. The results in this study showed that U-shaped arches were the most common among the Angle’s classification groups namely, class I malocclusion (80.04%) (Figure 1), class II malocclusion (87.98%) (Figure 2) and class III malocclusion (93.68%) (Figure 3). In the study conducted by Raghda Al-Shammout et al. When comparing the arch form (square, tapered and ovoid) according the different classes, the most common arch form in Class I was the ovoid, tapered in Class II and square in Class III subjects. According to the study by Sultan Olmez et al, there was no significant difference with respect to arch form between Class I and Class II arches. Tapered arch form was seen in high frequency in both groups whereas the sequence of ovoid arch form was less.

Consideration of the arch form is of utmost importance, because it is imperative that arch form should be examined before embarking upon the treatment as this gives valuable information about the position into which teeth can be moved if they are to be stable following treatment, and moreover, the arch form needs to be preserved as this would contribute to the stability of the orthodontic treatment that would have to be done and prevent relapse. With the availability of different preformed shapes and sizes of arch wires, different studies have highlighted the importance of selection of patient’s clinical arch form and customization of arch form.

Limitation of the study is that it is a single centered study with small population and therefore, the present study may serve as population study and a database for future comparisons and to obtain baseline information on the morphological arch dimensions of the fully dentate population since these variations highly influence orthodontic and prosthetic rehabilitation of patients.

Conclusion
Within the study limits, it was concluded that Class I occlusal relationship was the most common class of malocclusion followed by Class II. Ovoid arch was more common in class I, Class II, Class III malocclusion followed by v-shaped and square arch forms in class I and class III and V-shaped arch was more prominent in class II patients.

Conflict of interest
No

Acknowledgement
We would like to thank all the participants who took part in the study. We also thank Saveetha dental college and hospitals for their constant help and support.

AUTHOR CONTRIBUTION
The first author (Inchara.R) performed literature search, data collection, analysis, manuscript writing. The second author (Dr. A Sumathi Felicita) contributed study design, data verification and revision of the manuscript. The third author (Dr Arya S Prasad) contributed in manuscript writing and follow up.

SOURCE OF FUNDING:
The present project is funded by
- Saveetha Institute of Medical and Technical Sciences.
Arya S Prasad et al.: COMPARISON OF MAXILLARY AND MANDIBULAR ARCH FORM IN CLASS I, CLASS II AND CLASS III PATIENTS REPORTING FOR TREATMENT

- Saveetha Dental college and Hospitals.
- Saveetha University.
- Rakshith homes pvt.ltd.

REFERENCE

2. Wermerson CP. Comparison of tooth widths, arch widths, arch lengths in early mixed and permanent class I normal dentitions to class I and II crowded dentitions [Internet]. Available from: http://dx.doi.org/10.17077/etd.ph5roqw8

3. Table 6: Difference in facial indices between sagittal malocclusions (Class I, Class II, and Class III) [Internet]. Available from: http://dx.doi.org/10.7717/peerj.6889/table-6

4. VanLaeken R. Class III correction using an inter-arch spring loaded module [Internet]. Available from: http://dx.doi.org/10.33915/etd.3439

9. Cosgarea R. Treatment of multiple adjacent mandibular Miller Class I and II recessions with the modified tunnel technique [Internet]. Available from: http://dx.doi.org/10.26226/morressier.5a383292afeb00097a4677

36. Aljayousi M, Al-Khateeb SN, Badran S, Alhaija ESJ.A. Maxillary and mandibular dental arch forms in a Jordanian population with normal occlusion [Internet]. Available from: http://dx.doi.org/10.21203/rs.3.rs-61067/v1