Impact of Aerobic and Resistance Training on Thyroid-Stimulating Hormone in Hypothyroidism

Priyanka Yadav¹, Rituraj Verma²
¹Student Researcher, BPT Galgotias University, Greater Noida, India
²Prof., Physiotherapy, MPT (Orthopaedics), Galgotias University, Greater Noida, India
DOI: 10.47750/pnr.2022.13.S06.231

Abstract

Background: TSH is a hormone of the pituitary that stimulates the gland of thyroid processes, and TSH magnitude are an authentic indicator of thyroid hormone biochemical processes. Hypothyroidism is common and lengthily treatable. When it comes to the impact of aerobic and resistance activities on hypothyroid patients, there are a lot of conflicting perspectives. Aim: This study appraises the impact of aerobic and resistance training on Thyroid - Stimulating hormone (TSH) and evaluates which is a more effective exercise for hypothyroid patients. Methods: The study consisted of 30 hypothyroid patients, aged 30–40 years and were randomly divided into aerobic and resistance training groups. Resistance and aerobic group at 50mins of an exercise program for 5 days/week for 3 months. Serum ranges of TSH in hypothyroid patients have been evaluated before and at the quit of the three-month training session. The paired t-check is used to examine the influence of aerobic and resistance training on hypothyroid patients and to also compare the two approaches. Result: Data analysis, shows extensive consequences of aerobic and resistance training intervention in a patient with hypothyroidism(p > 0.05). And comparing the distinction among the TSH level of aerobic and resistance training groups indicates there is a major difference among the pre and publish check TSH serum levels within the resistance training group and it is more effective (p > 0.05) than the aerobic training group (p< 0.05). Conclusion: We concluded that training in aerobic and resistance activity affected the amendment of TSH concentration in plasma levels. But after comparing both the interventions it can conclude that the resistance exercise intervention was more effective and each hypothyroid patient needs to do resistance exercise in conjunction with thyroxine substitute to enhance thyroid function.

INTRODUCTION

Thyroid illnesses are among the most prevalent and debateable diseases of endocrine in the world. India too is not any expulsion. Consistent with a projection from distinct studies, it is evaluated that forty-two million folks in India are affected by thyroid illnesses.(1) The endocrine is the largest purely endocrine gland within the body. It is situated below the larynx and in front of the neck. Its structure looks like a butterfly and weighs about 15 -20g in adults.(2) Thyroid hormones 3-5-3’ Triiodothyronine(T3) and 3-5-3’-5’ Tetraiodothyronine(T4 thyroxine) are two amino acid-iodine bound thyroid hormones produced by the thyroid gland and T3 is the biologically active TH.(3) For the secretion of these hormones thyroid gland takes its direction from both the pituitary gland (situated at the bottom of the skull) and hypothalamus (in the brain). The hypothalamus is responsible for the release of (TRH) which activate the pituitary gland to supply (TSH) and then (TSH) aids the gland of the thyroid to supply T3 and T4 hormones.(4) The thyroid gland secretes T4 more than T3 and T4 is converted toT3 by the iodized T4 in the liver. T4 is less active than T3 in biological constraints considering its lower attraction for connecting to the receptors of thyroid hormone.(5) Thyroid Hormone influences a variety of metabolisms, including the quantity and production of enzymes, the breakdown of substrates, minerals, and vitamins and hence the responsiveness of desired tissues to a variety of hormones. This Thyroid Hormone has severe roles in cell differentiation, and constant calcification of endochondral and is necessary for the growth of the muscular system and the law of oxygen intake and thermogenesis. The thyroid hormone is an important governor of cardiac characteristics.(6,7)

Thyroid hormone T3 and T4 act on numerous body cells T3 hormone play a vital role in brain function and development, metabolic rate and maintenance of bone health and T4 are responsible for metabolism, mood, and body temperature control.(8) Hormones are a significant hallmark for governing the modifications to the organism.(9) Deficiency of (TH) may additionally intervene significantly with diverse components of bodily, intellectual and social well being and many research display modification in practical fame in patients with hypothyroidism.(10) Two thyroid diseases that greatly affect the population’s health is Hyperthyroidism and Hypothyroidism. Hyperthyroidism(overactive thyroid) in which their decreased Thyroid
Stimulating Hormone level about the elevated T3 and T4 concentration level in the blood. (11) Hypothyroidism (underactive thyroid) is a situation wherein the Thyroid-Stimulating Hormone level is elevated about lessened T3 concentration and T4 concentration measured in the blood. (12, 13) The normal value of 0.4 to 4.0 (mIU/L) mini international units per litre of Thyroid Hormones are taken for reference and T3 and T4 are 100 to 200 (ng/dL) and 5.0 to 12.0 (ug/dL) respectively. (14) Patients with both hypo and hyperthyroid diseases may exhibit signs that could compromise their health and quality of life. (14) In hyperthyroid there is weight loss, decreased cholesterol levels, heightened lipolysis, and increased resting energy expenditure in patients. (15) While in hypothyroidism a patient may present with clinical features like weight advantage, tiredness, sluggish coronary heartbeat, multiplied sensitivity to cold, constipation, swelling of face and neck, rough skin, depression and increased risk of mortality. (16, 17)

Hypothyroidism is more frequent in the older female population, in white individuals and individuals with autoimmune diseases. (17) As evaluated in a systemic assessment the predicted occurrence of hypothyroidism is large in the female population (350/100,000) as compared to the male one (80/100,000). These values show a two-fold enlargement from precedent estimates. (18) Exercise and fitness are known as significant benefactors to health and lessen the threat factor of illnesses to the cardiovascular system. (19) A common remedy for hypothyroidism is carried out through hormone substitute with levothyroxine which is concerned with reduced clinical manifestations in numerous body organs and systems. (20) Exercise can help to enhance thyroid characteristics and it is crucial for hypothyroidism treatment. The advantage of exercise which has a variety of consequences on human existence can be summed up as a reduction in the risk of heart diseases and weight management. (21) As the temperature rises during exercise, more metabolic commands are, activated via a system designed to disperse heat, such as activating blood vessel expansion. Strenuous exercise affects the hypothalamus, pituitary, and thyroid axes but it’s important to pay closer attention to how the thyroid gland functions after exercise. Exercise could be viewed as a form of physical load that is followed by adjustments to counteract the effects on the endocrine and metabolic systems that result in heat production. (22) Exercise is a stress condition in which the an organism must discover a new dynamic equilibrium. (23)

Aerobic workouts, the activities which are done within the sight of oxygen at lower power for longer duration like running, strolling, cycling, moving, swimming and so on the show to advantage in shedding pounds, boosting endurance, controlling glucose levels, forestalling heart illnesses and bringing down blood pressure. (24) Resistance training is known as weight or strength training. It joins by utilizing strong and skeletal frameworks to oppose and defeat a power, normally gravity. The benefits of resistance training may incorporate upgraded cardiovascular wellbeing and advanced high-thickness lipoprotein cholesterol level and bone density. (25) Singh et al. have researched the results of resistance training on the misery in elderly people. During an exemplary report, they found that every 80% of the depressed elderly folks who performed meetings of resistance training were not medically depressed. Upheld these investigations, may uncover that strength training is affiliated with decreased melancholy ranges in older adults. (26) Past examinations recorded that aerobic and strength training on hormonal reactions generally produces another change and vacillates the Thyroid-Stimulating hormone and T3 and T4 serum focus in the body. These hormonal changes are subject to force, length, sort of activity and explicit attributes of an individual. (27, 28, 29)

Review of Literature

Taner Akbulut took forty-five sedentary men elderly aged 18-22 years from University in 2020. Taner Akbulut turned into locating the response of thyroid hormones, glucose, uric acid and enzymes of the liver to cardio and mixed sports in the students of University. For inspecting the responses 3 companies have been made control, cardio and mixed exercising companies with 15 participants each. The control institution does not appear any exercise. The cardio and mixed exercising institution indulged in an exercising program of 4 days/week for 10 weeks. For comparing the responses of biochemical markers and thyroid hormones blood sample was taken before the primary and after the final session of the exercise program. A paired t-check was wielded to assess the intergroup variations. Consistent with the analysis of this examination mixed exercising turned into more effective than cardio exercising. As there have been significant variations in pre and put-up values of triiodothyronine, aspartate aminotransferase, uric acid and glucose level inside the mixed exercising institution.

Lila Kiani et., al took 30 inactive schoolgirls’ students of the Saleh Abal section of Theran city. In this study, Lila Kiani et., al was finding the consequences of moderate-depth aerobic workout in serum tiers of (TH) amongst inactive female subjects in 2020. In this study, the methodology was semi-experimental with pre-and post-testing. These two groups were made into exercise and control groups with 15 participants each and we were randomly divided. The Exercise group was performing aerobic exercises while the control group is not involved in any type of physical exercise. For measuring thyroid hormones
concentration blood sample is taken before and after the exercise program of 4 weeks from both groups. A t-test is used to analyse the result. According to this research moderate-depth aerobic workout of 70%, minimum coronary heart price has a minimum impact on thyroid hormones in inactive females with only a decrease in T3 concentration level.

Kefelegn Zenebe Altaye et., al took 18 school children with intellectual disabilities from Dessie and Kombolcha in 2020. Kefelegn Zenebe Altaye et., al was finding the impact of resistance exercise on thyroid and thyroid-stimulating hormone attention degree in school-age children with severe highbrow impairment. In this study, the methodology was evaluated prior to and later to the first and last exercise session respectively of thyroid hormones and thyroid-stimulating hormones. For this participants were taken from purposive sampling techniques from three schools of Dessie -Kombolcha. In this study, children were doing progressive resistance exercises for 16 weeks. For measuring the thyroid hormones and thyroid-stimulating hormone concentration blood sample was taken prior to and later to the first and last exercise session of 16 weeks respectively. A paired sample t-check had been wielded for normality and pre and post exercise level of thyroid hormones and thyroid-stimulating hormones. According to this research, there is a significant impact of resistance exercises with an elevation in T3, and T4 concentration and a decline in the concentration of TSH levels in schoolchildren with intellectual disabilities.

Ramazan. Erdogan et., al took 16 male athletes in 2020. Ramazan was finding athletes’ thyroid hormone metabolism and biochemical indicator as a result of endurance workouts. In this study, the methodology was evaluating the prior and post-test degree measurement of thyroid hormones and biochemical markers. In this study, participants were doing 60min endurance training 3 times a week. For measuring the thyroid hormones and biochemical markers blood sample was taken before the first exercise training and after the last exercise session of 12 weeks. A Shapiro Wilt-W and paired sample t-check were wielded for normality and pre and post test result comparison respectively. According to this research, significant changes in thyroid hormone levels and biochemical indicators are brought about by abiding endurance activity regimens

Thekraiat Al Quran et., al performed cross-sectional research: Quality of life amongst patients taking levothyroxine in 2020. In this study, the methodology was questionnaire and Thyroid levels. A questionnaire consists of 12 domains with 39 items and one final question regarding the overall effect of thyroid diseases on the patient's life. Based on this questionnaire we collect appropriate data from participants and thyroid hormone levels were assessed from the electronic records. ANOVA and t-test were utilized to distinguish the means of QoL domains' scores. According to this study, Quality of life was affected in patients receiving Levothyroxine, regardless of hormonal status.

Examining the impact of a food regimen plus workout application on thyroid characteristics in sufferers with weight problems and the connection among frame weight or composition and extrude in thyroid characteristics. Youssef Koudidrat et., al conducted this research in the Department of a hospital in France in 2019. Youssef Koudidrat et., al took 34 euthyroid patients with obesity (BMI> Kg/m²), 18 men and 16 women. Participants were involved in a group format exercise program of 30 min land base aerobic exercise and 45 min water-based aerobic class for 3 months and 3 times meals comprised of 55% carbohydrate, 15% protein, and 30% protein were provided by the department to the participants during the study. Body composition, biochemical variables and serum level of TSH, free T3, and free T4 had been assessed before the primary and at the quit of the three months of food regimen plus workout program. A Spearman's and paired sample t- check was wielded for evaluating the distinction in clinical and biochemical markers and correlations among the variations in frame weight or composition and thyroid characteristics. According to the findings of this study, there has been no affiliation among baseline thyroid characteristics, BMI or body composition and thyroid function was not altered significantly during the study, notwithstanding huge weight reduction and fall in BMI readings.

Kefelegn Zenebe Altaye et., al took 36 adolescents with intellectual disabilities from a school in Dessie- Kombolcha in 2019. In this study, Kefelegn Zenebe Altaye et., al was finding the impact of aerobic workout consequences on thyroid hormone among adolescents with highbrow disabilities. This study was a quasi-experimental design study of 16 weeks. For evaluating the aerobic exercise effects two groups were made experimental and a control group with 18 participants each which were arbitrarily split into groups of two. The experimental group was performing aerobic exercise and the control group was devoted to now no longer taking part in any workout besides their formal school workout for sixteen weeks. For measuring thyroid hormones and thyroid-stimulating hormones blood sample was taken prior to and later to the first and last exercise session of 16 weeks respectively. For measuring the thyroid hormonal change concentration blood sample was taken before the first exercise session and after the last exercise session. An independent t- check was wielded to study and compare the intergroup distinctions among the control and experimental group. According to this study, aerobic exercise had a substantial impact on the amendment of TSH and thyroid hormone concentration levels, with a drop in TSH and a rise in T3 and T4 concentration levels.
Mohammad Reza Mehravari et al took 22 sedentary women aged 25-40 years in 2018. Mohammad Reza Mehravari et al was examining the impact of an 8-week Pilates workout on thyroid function in inactive females. For evaluating the effects two groups were made one Pilates group and a second control group with 11 participants each. For eight weeks, the Pilates group exercised for 60 minutes three times each week, while the control group did not engage in any exercise. Body composition parameters, T3, T4 and TSH concentration were assessed prior to the intervention’s initiation and after it ended. A Shapiro-Wilk and ANCOVA test was wielded for the analysis of the result. According to this research, there was a decrease in fat mass but no significant effects on thyroid functions.

A randomized scientific trial shows that exercise education improves the quality of health in ladies with subclinical hypothyroidism (2018). In this particular research Francisco Zacaron Werneck et al took 55 women aged 20-60 years who were conscripted from the Endocrinology service of Hospital and Maternity, Brazil. The study was performed in two phases. In the first phase, a study was executed to compare and examine the signs and symptoms of hypothyroidism and HRQoL of participants in these 2 groups we're made, the subclinical hypothyroid group(sHT) with 22 participants and the euthyroid group with 33 participants. In the second phase, the subclinical hypothyroid group was divided into two groups with 10 participants each. sHT training group and sHT sedentary group. Two participants were eliminated from the study because of changes in BP and coronary heart price during exercise. In the sHT training group, participants were performing aerobic exercise for 16 weeks and the sedentary group was retaining their usual daily life activities. In this study, the methodology used was a questionnaire, the Billewicz scale modified with 12 components and SF -36 with 36 items. A man -Whitney test, two-way (ANOVA), and Fisher's Exact Test was used for analysis in this research. According to this research, there had been upgrades in HRQoL in ladies of the sHT training group in assessment with the sHT sedentary group and a decrease in ranking in the functional capability area of the sHT group in assessment with the euthyroid group.

Zarife Pancar et al took 27 boys aged 12 -14 years. 12 obese boys and 15 overweight boys were split into groups of two respectively. The effects of a four-week low-intensity exercise programme on thyroid hormone levels in overweight and obese children were studied by Zarife Pancar et al, al in 2017. The participants were given a 3-day-per-week, 60-minute carrying games and growing walking programme to evaluate the consequences. One day prior to the primary session and after the last session of the physical training program, blood samples were taken and thyroid hormone concentration levels were compared using a paired t- check. According to the analysis of this research 4-weekly, low-intensity physical training program results in a change in thyroid hormone level. The body weight of the obese group was reduced and triiodothyronine values elevated after the physical activity program and in the overweight children group, drop-in frame mass and body mass index values and growth in triiudothyrionine values. There have been no variations among the groups in the pre-check variations of measured traits of each group.

In 2015, Mitra Onsari and Mohammad Galedari investigated the consequences of twelve weeks of aerobic workout on the plasma degree of the thyroid hormone and TSH in inactive women. Participants for this semi-experimental study were chosen at random and put into two groups: aerobic and control each with 15 participants. The aerobic group was performing low-intensity aerobic exercise in three stages for 60 min, 3 days/week and the control group was not involved in any physical activity for a 12-week course of study. For evaluating the effects on the concentration level of TSH and thyroid hormone blood sample was taken before the first and last training session. To examine the differences among intragroup and variables, respectively, correlated t-tests and the Pearson correlation coefficient were utilized. According to this study's findings, there are not any substantial consequences of aerobic workouts on TSH and thyroid hormone awareness levels.

Akash Bansal et al took 20 healthful dealt with hypothyroidism male sufferers with an equivalent level of hypothyroidism aged 30-40 years and researched inside the Biochemistry Department all through a tertiary level care Centre in Bastar location of Chhattisgarh In 2015. During this study Akash Bansal et al, al was finding the effect of normal workouts on the thyroid characteristic of treated hypothyroid sufferers. For evaluating the consequences two groups were made, exercise and non-exercise groups with 10 participants each. The mean thyroxine dose was 97 mg/day and 100mg/day within the exercise and none exercise groups respectively. The exercise group was performing sports and jogging daily for 3 months and none exercise group weren't doing any exercise during the study. For examining the consequences blood specimens were collected before the starting of the primary and last session of exercise. A t-test was utilized to contrast the differences among the two groups. Consistent with this research there was a considerable reduction in the concentration level of TSH and mean weight in the exercise group with an increase in T3 and T4 levels as compared with the non-exercise group.

Eskandar Rahimi et al took 20 male students recruited from Shiraz -Iran universities aged 22-27 years. Eskandar Rahimi et al, al was finding the impact of a resistance exercise regimen on thyroid hormones in 2013. For evaluating the effects two groups were made resistance training group and a control group with 10 participants each which were randomly divided. The resistance training group was performing resistance exercises with increasing intensity for 3 days a week and the control group was doing...
normal activities for 8 weeks. The blood sample was taken before and after the intervention for evaluating the consequences of resistance training on hormones of the thyroid. A Kolmogorov-Smirnov test, analysis of variance with repeated measures, post hoc test LSD and paired t-check were wielded to decide the ordinary distribution, to investigate the change in training variables and to make certain that the control variables are attained respectively. According to this study, there were no notable changes in thyroid hormones in the resistance training group were seen during the study.

Anthony C. Hackney et., al took 15 males who were engaged in sports activities before the study was conducted. Anthony C. Hackney et., al 2012, compare the thyroidal hormonal response to resistance training at high and constant intensities. For examining the response three sessions were made for participants. The primary session consists of high-intensity interval exercise for 42-47 minutes doing 90 seconds of running (treadmill) at 100-110 per cent of maximum oxygen consumption and 90 seconds of active recovery at 40 per cent of maximal oxygen uptake. The second session consisted of a stable state resistance exercise at 60-65 per cent of maximum oxygen consumption. A 45minute supine lying phase was the third session. Every session produced the same amount of work. Blood samples were obtained and analysed to assess reverse triiodothyronine, free thyroxine, free triiodothyronine degree and cortisol level pre-workout, instant post-workout and twelve hours post-workout. Consistent with this study, all pre-workout high-intensity interval exercise and stable state resistance training hormone ranges have been substantially raised in comparison to instant post-workout of the supine lying phase. There were no significant variations in hormone ranges between supine lying phase and stable state resistance training at twelve hours post-workout, however free triiodothyronine level was considerably lower and reverse triiodothyronine level was considerably higher twelve hours post-workout contrasted to twelve hours post-workout of stable-state resistance training and supine lying phase. In the case of high-intensity interval exercise, an indirect association between free and reverse triiodothyronine (fT3, rT3) was discovered at twelve hours post-workout. A direct association among cortisol instant post-workout and reverse triiodothyronine values at twelve hours post-workout was also discovered for high-intensity interval exercise, as well as an inverse relationship among cortisol of instant post-workout and free triiodothyronine values at twelve hours post-workout.

Figen Ciloglu et., al took 16 well-trained male athletes aged 20-26 years in 2005 Tehran. Figen Ciloglu et., al was finding the effects of exercise intensity on thyroid hormones. For evaluating the effects, the participants were performing a 9-minute bicycle ergometer at an increasing intensity of 45%, 70%, and 90% every 3 minutes. These intensities had been assigned to their most coronary heart price and the Carvonen approach became used for figuring out intensities of exercise. At the quit of each three minutes, they had been suspended for 30 seconds for taking the blood sample. A one-manner ANOVA and Tukey HSD became used for locating the variations among values at distinctive time points. According to this study, 70% of the coronary heart price precipitated the maximum outstanding adjustments withinside the hormone values and the values of T4, free thyroxine(fT4) and TSH endured to upward push at 90% of most coronary heart prices, and the values of T3, and free triiodothyronine(fT3) commenced to fall.

Wen-Sheng Huang et., al took 26 male military recruits aged 23-27 years in 2003. Wen-Sheng Huang et., al were finding the effects on thyroid hormone readings after a treadmill workout. The subjects were given a similar food regime and physical activity for a week to assess the effects. All subjects were given a 650-790 calorie diet as well as Bruce protocol was completed by all participants with normal ECG readings. Samples of blood were collected right after following the workout to evaluate the possible effects on hemodynamic changes, thyroid hormones, and TSH. According to the study, the concentration of flowing thyroid hormones was not strongly influenced by treadmill workouts.

Methodology

Study Design

This is an experimental and comparative observation Wherein I have attempted to discover the outcome of aerobic and resistance education on TSH attention in the blood. In the study, I have taken ng 30 females with hypothyroidism.

Process of Data Collection

Sampling
The total sample was 40, out of which 30 women with hypothyroidism aged 30-40 years were randomly split into groups of two after being recruited voluntarily. All of the subject’s thyroxine substitute doses were steady (eltroxine). In both the resistance and aerobic training groups, the average thyroxine dose was 100mcg/day. Before beginning the study, the study was delineated very well to participants. The person inclined to take part withinside the examination voluntarily signed the consent form.

Anthropometric Measurements

The person is asked to stand barefoot on a piece of wall-mounted equipment that measures height in centimetres, with their heels, hips, and shoulders in contact with the wall, to have their height determined. Then their heights were measured in centimetres. The participant’s weight was recorded using the digital weight scale. The arterial pressure and pulse rate were measured and recorded using a digital sphygmomanometer in two stages: before starting the intervention program and after the intervention program were recorded in the respective tables.

Training Program/Exercise Protocol

Aerobic training group:

Person-times, 5 days/week for 3 months in a 50-minute session and performed in three stages, the initial training phase consisted of 10 minutes of warm-up exercises including dynamic stretching of major muscles of upper and lower limbs. The second stage of 15-30 main moderate-intensity aerobic workout, walking or jogging and the third stage is followed by 10 minutes of cool-down exercises.

Resistance training group

Person-times, 5 days/week for 3 months in a 50-minute session and also conducted in 3 Stages. The first stage of training included 10 minutes of warm-up exercises. The second stage was, main resistance training with a resistive band or Thera band and the third stage included 10-minute cool-down exercises.

Blood Analysis

To compare the plasma attention of (TSH) blood specimens have been drawn from individuals, forty-eight hours prior to the primary training consultation and after 12 weeks of a training consultation. Samples of blood specimens had been obtained in a comfortable sitting position via way means of certified laboratory technicians by the ELISA method.

Sample Size

A total no. of 30 women aged 30-40 years were randomly recruited from Thyroid Clinic.

Inclusion Criteria

Patients with diagnosed cases of hypothyroidism, exalted serum TSH level

(> 5.0 uIU/mL)

Age group: 30-40 years

Gender: Female

Exclusion Criteria

Smokers

Individuals with hypertension
Clinical detectable cardiovascular diseases

Asthmatic

Diabetic

Data Analysis

By computing the average and standard deviation, the data for personal traits and research variables in this study were categorised and described. The paired sample t-check was utilized to assess the influence of aerobic and resistance training and to also compare the two approaches. The significant stage was established as (p>0.05). Microsoft Excel was used to generate tables and graphs.

Result Analysis

Table no.1 suggests the mean and SD of height(in cm), weight(kg), pre and put-up readings of systolic and diastolic heart rate(in mmHg), pulse rate(in bpm)of women with hypothyroidism in the aerobic and resistance group.

Table No.1 Women with hypothyroidism in the aerobic and resistance Group’s demographic characteristics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Resistance Group</th>
<th>Aerobic Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (cm)</td>
<td>155.63±4.1559</td>
<td>158.00±3.776</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>64.8±4.4301</td>
<td>67.4±5.388</td>
</tr>
<tr>
<td>Pre-test Systolic BP (mmHg)</td>
<td>99.26±12.577</td>
<td>105.26±19.505</td>
</tr>
<tr>
<td>Pre-test Diastolic BP (mmHg)</td>
<td>67.06±6.392</td>
<td>84.53±10.005</td>
</tr>
<tr>
<td>Post-test Systolic BP (mmHg)</td>
<td>105.8±8.9233</td>
<td>96.13±18.647</td>
</tr>
<tr>
<td>Post-test Diastolic BP (mmHg)</td>
<td>68.53±7.013</td>
<td>78.4±6.0199</td>
</tr>
<tr>
<td>Pre-test Pulse Rate (bpm)</td>
<td>76.8±4.621</td>
<td>81.73±6.98</td>
</tr>
<tr>
<td>Post-test Pulse Rate (bpm)</td>
<td>89.53±8.373</td>
<td>82.53±7.83</td>
</tr>
</tbody>
</table>
Graph No.1 suggests the pre and put-up check TSH level of and resistance training group.

Graph No.1

Graph No.2 suggests the pre and put-up check TSH level of the resistance training group.
Graph No.2

Graph No.3 suggests the pre and put-up check TSH level of the aerobic training group.
Discussion

Table no. 11 shows the mean, SD, t-value, degree of freedom and significance level pre and post-test TSH concentration of resistance and aerobic exercise group.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pre and Post-test TSH Level (Aerobic and Resistance Group)</th>
<th>Pre and Post-test TSH Level (Resistance Group)</th>
<th>Pre and Post-test TSH Level (Aerobic Group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.588</td>
<td>4.465</td>
<td>0.7107</td>
</tr>
<tr>
<td>SD</td>
<td>5.647</td>
<td>3.523</td>
<td>6.789</td>
</tr>
<tr>
<td>t</td>
<td>2.51</td>
<td>4.908</td>
<td>0.4054</td>
</tr>
<tr>
<td>df</td>
<td>29</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Sig</td>
<td>0.0179</td>
<td>0.0002</td>
<td>0.6913</td>
</tr>
</tbody>
</table>

Our goal is to evaluate the impact of aerobic and resistance training on TSH concentration in a hypothyroid patient. According to the study's outcomes (Table No.13), both aerobic and resistance training resulted in a significant change in TSH concentration, however, when the two training groups were compared, it finds out that resistance training intervention had a more significant influence on TSH concentration in a patient with hypothyroidism. The association between exercise and the thyroid-stimulating hormone has been the question of some research results. In one of these studies, 12-week aerobic exercise shows no significant effects in sedentary women (Onsari, Galedari, 2015). Another study of 3 months of physical exercise for daily 1 hour in form of sport and jogging showed decreased TSH concentration in the regular physical exercise group (Akash Bansal et., al, 2015). Another study of 16-week aerobic exercise in adolescents with intellectual disabilities show decreased TSH concentration with increased T3 and T4 concentration (Kefelegn Zenebe Altaye et., al, 2019). Another study evaluating the outcome of acute cardio workout on arterial stiffness and (TSH) in subclinical hypothyroidism concluded that there was a reduction in arterial stiffness and an increase in TSH level in comparison to euthyroid group participants (Mitsuru Madaki et., al, 2019). In another examination, analyzing the result of a food regime plus exercising application on thyroid characteristics in sufferers with weight problems in 34 thyroid patients shows no change in the thyroid function and decrease weight and fat mass (Youssef Kouidrat et., al, 2019). Another study observing the effects of exercising intensity on thyroid hormones in 60 male athletes by performing bicycle ergometer at different intensities shows an increase in the T4, fT4 and TSH levels while a decrease in T3 and fT3 levels (Figen Ciloglu et., al, 2006). In another study examining the response of uric acid, glucose, thyroid hormone and liver enzyme to aerobic and combined exercise in 45 male university students combined exercise is more effective than aerobic exercise (Taner Akbult, 2020). Another study evaluating the 8weeks effects of resistance training on thyroid hormones shows no significant effects (Eskander Rahimi et., al, 2013) In this sense, the results of the current study don’t match those of (Onsari and Galedari, 2015), (Akash Bansal et., al, 2015), Kefelegn Zenebe Altaye et., al, 2019), Eskander Rahimi et., al, 2013). These inconsistencies could result from methodological variations in the kind, level and length of the training procedure. The findings of the study can serve as a starting point for anyone interested in conducting an additional related study in this area.
Conclusion

According to the analysis of moderate-intensity aerobic and resistance, exercise intervention shows significant effects on Thyroid-stimulating hormone in a patient with hypothyroidism but after comparing both interventions it can conclude that resistance exercise intervention was effective and each hypothyroid patient needs to do resistance exercise in conjunction with thyroxine substitute to enhance the thyroid function.

Boundaries of Examine

1. The following study has a modest sample size.
2. The Study is only for females.

Ethical approval – Before participating, participants provided informed consent.

Funding Source – Self

Future scope of the study: The study can be conducted on a large population and males and females both may be subject of consideration.

Conflict of interest:-

There is no conflict of interest.

REFERENCES

18. RA. Physiological Changes of Exercise of Thermogenesis, Thyroid Homeostasis and Inflammation. EMJ. 2016 Oct 14;3(4).
19. Fragala MS, Bi C, Chaump M, Kaufman HW, Kroll MH. Associations of Aerobic and Strength Exercise with Clinical Laboratory Test Values. Medicine


