Role of Serum Retinol Binding protein 4 (RBP4) and it’s Various Correlations in Type 2 diabetes mellitus Population

1PhD Scholar, Department of Biochemistry, Santosh Medical College & Hospital, Santosh Deemed to be University, Ghaziabad.
2Professor & HOD, Department of Biochemistry, Santosh Medical College & Hospital, Santosh Deemed to be University, Ghaziabad.
3Professor, Department of Biochemistry, Santosh Medical College & Hospital, Santosh Deemed to be University, Ghaziabad.
4Professor & HOD, Department of General Medicine, Teerthanker Mahaveer Hospital, Teerthanker Mahaveer University, Moradabad.
5Assistant Professor, Teerthanker College of Pharmacy, Teerthanker Mahaveer University, Moradabad.

Corresponding author: Dr. Jyoti Trivedi, PhD Scholar (Medical Biochemistry), Santosh Medical College & Hospital, Santosh Deemed to be University, Ghaziabad.

Email: jyoti.trivedi01@gmail.com
DOI: 10.47750/pnr.2022.13.S01.253

Abstract

Diabetes mellitus is gaining the status of a potential epidemic and is the most common endocrine disorder, although major driving factors behind this epidemic are poor nutrition and lifestyle transitions, growing evidence supports a role of recently proposed adipokine i.e. Retinol binding protein 4 in the pathogenesis of type 2 diabetes mellitus. Objective: To estimate serum RBP4 concentrations in type 2 diabetes mellitus patients and to correlate it with diabetic parameters like FPG, HbA1c, and BMI. Methodology: 113 participants aged 35-55 years, both males and females were included, who were diagnosed and confirmed by the estimation of FPG (≥126mg/dl) and HbA1c level (≥6.5%) as type 2 diabetes mellitus patients. An equal number of age and sex-matched pre-confirmed non-diabetic individuals from hospital staff were recruited as controls. Serum RBP4 (Human) concentration was measured by quantitative sandwich enzyme-linked immunosorbent assay (ELISA) technology using Bioassay Technology Laboratory, ELISA kit. Result: The concentration of serum RBP4 in the blood plasma of type 2 diabetes mellitus patients (76.53±26.96ng/ml) was found to be significantly higher than the healthy controls (53.77±12.62ng/ml), (P<0.001). Positive correlations were found between serum RBP4 with FPG, HbA1c, and BMI in the diabetic groups (p<0.001). Conclusion: The concentration of serum RBP4 was found to be increased in Type 2 diabetes mellitus patients, and related to various clinical parameters of diabetes, suggesting a role in the pathogenesis of Type 2 diabetes mellitus.

Keywords: Insulin resistance, Retinol binding protein 4, Type 2 diabetes mellitus.

INTRODUCTION

Diabetes mellitus has considered a potential epidemic and is the most common endocrine disorder. Although major driving factors behind this epidemic are poor nutrition and lifestyle transitions, growing evidence suggests a role of adipokines and they may also be suggested as good markers of metabolic syndrome and unregulated production of these cytokines may change metabolic homeostasis, insulin sensitivity, immune response, and cardiovascular disease.

Retinol binding protein 4 (RBP4) is a recently proposed adipokine, reported by contributing to insulin resistance and T2DM, belongs to the lipocalins family, and transports vitamin A (retinol) from the liver to peripheral tissues. The protein encoded gene is located on chromosome 10 (10q23.33) near regions encoding genes linked to increased levels of fasting glucose, such as gene TCF7L2 (10q25.3) which controls CREB and Fox01 genes.

Experimental studies have suggested that RBP4 is upregulated in insulin-resistant mouse models and in subjects with insulin resistance or type 2 diabetes mellitus. Furthermore, genetic knockout of GLUT4 expression in adipose tissue of mice results in reciprocal changes in adipose RBP4 expression and circulating RBP4 levels. Moreover, increasing serum RBP4 may induce
hepatic expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) and found to impair insulin signaling in muscle. Also, RBP4 has been known as a negative acute-phase inflammatory reactant. It has recently been suggested that inflammation produced by RBP4 may induce insulin resistance and cardiovascular risk.\(^5\)

Fenretinide, a synthetic retinoid that increases urinary RBP4 excretion, reduces serum RBP4 levels, and found to improve insulin action in obese mice, thus may have a therapeutic potential role in T2DM.\(^6\) However, the link between RBP4 and insulin resistance in humans is still under discussion. Hence, RBP4 seems to affect insulin resistance, therefore in view of the above statements, the present study was designed to measure the levels of RBP4 in type 2 diabetes mellitus patients and controls and correlate with various parameters and also find associating relationship with obesity.

MATERIALS AND METHODS

Study Design

This Hospital-based, cross-sectional type of observational study was conducted at Santosh Medical College & Hospital, Ghaziabad, in collaboration with Teerthanker Mahaveer medical college & Research Center, Moradabad, Uttar Pradesh, India from August 2021- February 2022.

Inclusion criteria

113 participants aged 35-55 years, both males and females were included, who was diagnosed and confirmed by the estimation of FPG (≥126mg/dl) and HbA1c level (≥6.5%) as type 2 diabetes mellitus patients. An equal number of age and sex-matched pre-confirmed non-diabetic individuals from hospital staff were recruited as controls. The study was approved by the Institute Ethics Committee of the Santosh Deemed to be University, Ghaziabad [F. No.SU/2021/2131[4]].

All participants were informed about the study protocol and written informed consent was obtained from all the participants under study.

Exclusion Criteria\(^7,8\)

Type 1 Diabetes mellitus, Chronic kidney disease, Chronic liver disease, Thyroid dysfunction, Patient on weight reduction therapy, hypoglycemic drugs, insulin therapy, and statins were excluded.

Sample Size Calculation

\[
n = \frac{Z_{\alpha/2}^2 \times p (1-p) \times D}{E^2}
\]

\(Z_{\alpha/2}^2: \) Standard normal Variate = 1.96 at 5% type 1 error

\(P: \) prevalence rate \(^9\) = 8.03

\(D: \) design effect= 1

\(E: \) margin of error = 5%

Sample size (n) = \((1.96)^2 \times 8.03(100-8.03) \times 1 / (5)^2\)

\[= 113\]

Sample collection
After overnight fasting for 8-10 hours, about 5 ml of venous blood was drawn under aseptic conditions from the antecubital vein of all the type 2 diabetics and controls.

- EDTA vial was used for glycosylated hemoglobin (HbA1c)
- Fluoride oxalate vial for fasting plasma glucose (FPG) estimation
- Plain vial was taken for serum RBP4, serum iron, serum ferritin, and UIBC
- Serum samples were stored at 2-6°C and processed within one month period
- Repeated thaw cycles were avoided

Methodology

Serum RBP4 concentration was measured by quantitative sandwich enzyme-linked immunosorbent assay (ELISA) technology using Bioassay Technology Laboratory, ELISA kit.10 Fasting plasma glucose (FPG) estimation was done by the Glucose Oxidase–Peroxide (GOD-POD) Method.11 HbA1c estimation was done by the Particle enhanced immunoturbidimetric method.12 BMI was calculated by dividing body weight (Kg) by the square of height (meters)

Statistical Analysis

Statistical Package for the Social Sciences (SPSS) version 28.0 was used for the analysis of data. Qualitative data were represented as frequency and percentage whereas quantitative data were expressed as Mean±Standard Deviation (SD) for both case and control groups. Independent Student's t-test was used to compare the values of serum RBP4 and BMI between cases and control groups. Correlation between serum RBP4 and diabetic parameters and BMI in diabetic cases was done by using Pearson's coefficient (r-value). ANOVA was used to compare more than two groups. Linear regression was done to show the relationship between variables. The p<0.05 was considered to be statistically significant and the p-value <0.001 is highly significant.

RESULTS

Table 1: Percentage and group-wise distribution of type 2 diabetes mellitus patients and controls

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Demographical variables</th>
<th>Category</th>
<th>Diabetic cases (n=113)</th>
<th>Controls (n=113)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Gender</td>
<td>Female</td>
<td>58(51.3%)</td>
<td>57(50.4%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Male</td>
<td>55(48.7%)</td>
<td>56(49.6%)</td>
</tr>
<tr>
<td>b</td>
<td>BMI</td>
<td>Normal weight(n=119)</td>
<td>50(44.2%)</td>
<td>69(61.1%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overweight(n=75)</td>
<td>41(36.3%)</td>
<td>34(30.1%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Obesity (n=32)</td>
<td>22(19.5%)</td>
<td>10(8.8%)</td>
</tr>
</tbody>
</table>

- An equal distribution of gender-matched individuals was taken into study
- The maximum percentage of participants were normal in weight in both cases and the control group as compared to overweight and obese individuals
Table 2: Comparison between diabetic and control groups on various demographical variables (Independent Student’s t-test)

<table>
<thead>
<tr>
<th>Demographical variables</th>
<th>Diabetic Cases (Mean ± SD)</th>
<th>Controls (Mean ± SD)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>47.33 ± 8.38</td>
<td>46.04 ±6.47</td>
<td>0.062 (N.S)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>68.19 ± 8.59</td>
<td>64.81± 7.08</td>
<td><0.001***</td>
</tr>
</tbody>
</table>
No significant difference was found in the age group between cases and controls; hence individuals were age-matched. (p=0.062)

Diabetic cases had higher BMI as compared to the Control group (P<0.001). FPG and HbA1c levels were higher in cases as compared to controls(p<0.001)

Table 3: Comparison of Serum RBP4 levels between Diabetic & Non-Diabetic controls (Independent Student’s t-test)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Diabetic Cases (Mean ± SD)</th>
<th>Controls (Mean ± SD)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBP4(ng/ml)</td>
<td>76.53±26.96</td>
<td>53.77±12.62</td>
<td><0.001***</td>
</tr>
</tbody>
</table>
The concentration of serum RBP4 in the blood plasma of type 2 diabetes mellitus patients (76.53±26.96 ng/ml) was found to be significantly higher than the healthy controls (53.77±12.62 ng/ml), (P<0.001).

Table 4: Comparison between RBP4 levels in males and females in type 2 diabetes mellitus patients and controls (Independent Student’s t-test)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Males (Mean ± SD)</th>
<th>Females (Mean ± SD)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBP4 (ng/ml)</td>
<td>80.54 ± 29.79</td>
<td>72.54 ± 23.58</td>
<td>0.115(NS)</td>
</tr>
<tr>
<td>Cases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBP4 (ng/ml)</td>
<td>55.71 ± 13.16</td>
<td>51.87 ± 11.88</td>
<td>0.106(NS)</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p>0.05 Not Significant (NS)

RBP4 concentration is higher in males as compared to females in both diabetic and control groups, although non significantly (p>0.05)
Table 5: Correlation of FPG, HbA1c & BMI with Serum RBP4 among Diabetic patients (Pearson’s correlation coefficient)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Parameters</th>
<th>r-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Serum RBP4 & FPG</td>
<td>0.465</td>
<td>p<0.001***</td>
</tr>
<tr>
<td>b</td>
<td>Serum RBP4 & HbA1c</td>
<td>0.673</td>
<td>p<0.001***</td>
</tr>
<tr>
<td>c</td>
<td>Serum RBP4 & BMI</td>
<td>0.863</td>
<td>p<0.001***</td>
</tr>
</tbody>
</table>

*** p<0.001 Highly significant

➢ Serum RBP4 is positively correlated with FPG of diabetic patients (r=0.465), (p<0.001). This signifies a significant increase in serum RBP4 levels with an increase in FPG values in the diabetic group.
➢ Serum RBP4 is positively correlated with HbA1c of diabetic patients (r=0.673), (p<0.001). This signifies a significant increase in serum RBP4 levels with an increase in HbA1c levels in the diabetic group.
➢ Serum RBP4 is positively correlated with the BMI of diabetic patients (r=0.863), (p<0.001). This signifies a significant increase in serum RBP4 levels with an increase in BMI in the diabetic group.
Figure 5(a) : Linear regression between RBP4 and FPG

\[y = 0.2588x + 30.13 \]
\[R^2 = 0.395 \]

Figure 5(b) : Linear regression between RBP4 and HbA1c

\[y = 7.1369x + 15.272 \]
\[R^2 = 0.5549 \]
Table 6: Comparison between RBP4 based on BMI categories as normal weight, overweight and obese individuals (ANOVA Test)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal (n=119) (Mean ± SD)</th>
<th>Overweight (n=75) (Mean ± SD)</th>
<th>Obese (n=32) (Mean ± SD)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBP4(ng/ml)</td>
<td>53.01 ± 9.86</td>
<td>72.32 ± 19.73</td>
<td>93.45 ± 36.31</td>
<td><0.001***</td>
</tr>
</tbody>
</table>

*** p<0.001 Highly significant
➢ A higher RBP4 concentration was found in Obese individuals than in overweight and normal-weight participants (P<0.001)
DISCUSSION

Retinol binding protein 4 (RBP4), a specific carrier for retinol in circulation, is produced and released mainly by hepatocytes (80%) and adipocytes (20%). Previous studies have reported that the elevation of adipocyte-secreted RBP4 contributes to the development of insulin resistance in mice. However, these associations are not supported by all studies in humans, as several studies found no correlation between circulating RBP4 levels and insulin resistance, impaired glucose tolerance, or type 2 diabetes. Therefore, the present study was carried out to evaluate serum levels of RBP4 in diabetic patients and compare them with healthy controls.

The present study showed that an equal distribution of gender-matched individuals was taken into the study. Also, no significant difference was found in the age group between cases and control, hence individuals were age-matched. (p=0.062). (Table 1). The main findings of various measured parameters showed that the mean values of FPG, HbA1c, and BMI were 182.61±46.33mg/dl, 8.67±2.51% and 26.38±3.63kg/m2 respectively in Type 2 diabetes mellitus patients, which was found to be statistically higher than the mean values of their respective controls 88.12±11.04 mg/dl, 5.26±0.51 % and 24.70±3.07 kg/m2 (p<0.001) (Table 2).

The main perspective of our study was to compare serum levels of RBP4 in diabetic patients and we found that the concentration of serum RBP4 in type 2 diabetes mellitus patients was (76.53±26.96ng/ml) which was significantly higher than the healthy controls(53.77±12.62ng/ml), (P<0.001) (Table 3). This result is consistent with previous research, carried out by Cho et al., Takebayshi K et al., and Tan MI et al.

Free RBP4 in blood plasma is synthesized and secreted from adipocytes and majorly from the liver. This high concentration of RBP4 in the blood plasma of diabetic participants is probably correlated with its function in maintaining metabolic control. Ma et al. stated that the important role of hepatic RBP4 is to maintain metabolic control.

Several mechanisms linking RBP4 to insulin resistance and type 2 diabetes have been investigated. It may be demonstrated that the RBP-4 gene is located on chromosome 10 (10q23-q24) in humans in a region that contains at least 1 gene i.e., hexokinase 1, the gene encoding a key enzyme in the initial step of glucose metabolism. Furthermore, increased serum RBP4 levels are known to stimulate hepatic gluconeogenesis through the stimulation of phosphoenolpyruvate carboxykinase and the attenuated insulin signaling in skeletal muscle. Insulin signaling in primary human adipocytes was affected by RBP4 by blocking the insulin-stimulated phosphorylation of insulin receptor substrate-1 at serine in position 307. Further, the link between RBP4 and type T2DM could also be mediated through impaired insulin secretion, insulin levels which was not measured in the present study.
In contrast, Erickstrup et al. stated that when compared to people with normal glucose tolerance, the plasma concentration of RBP4 was lower in T2DM patients (p<0.05). Comucci EB et al found that higher RBP4 levels (104.8 ± 76.8 ng/mL) were observed in lean-control individuals when compared to obese having normal glucose tolerance (87.9 ± 38 ng/mL) and obese with type 2 diabetic individuals (72.2 ± 15.6 ng/mL).³

Somehow, there seems to be a number of factors interfering with correlations that should be considered when interpreting results. Furthermore, genetic differences in the profile of studied populations, relationships among gender, and age, have an important role in the interpretation and comparison of data obtained. The inconsistency in the results might be due to the small number of samples in this study, therefore, further research in a larger area is suggested.

Interestingly, in our study RBP4 concentration was found to be higher in males (80.54 ± 29.79ng/ml) than in females (72.54 ± 23.58ng/ml) in the diabetic group along with the control group 55.71 ± 13.16ng/ml and 51.87 ± 11.88ng/ml respectively, although it is not statistically significant (p>0.05) (Table 4). On the other hand, investigations with statistically significant higher RBP4 levels in males have been observed by other authors like Cho et al., Ulgen F et al., Khalil H et al., and Yeli Wang et al. While, Rhie YJ et al. suggested no statistically significant difference in serum RBP4 between males and females (54.94 ± 20.18 vs 49.67 ± 16.66 mg/L, P = 0.166), ²¹

Plasma RBP4 concentrations were found to be sexually dimorphic, which had previously been reported for adipokines, such as leptin and adiponectin, and explained on the basis of different fat amounts and the influences of sex hormones. No difference was found in plasma RBP4 levels with respect to fat amounts or body fat percentages in the present study. Thus, it appears that differences in sex hormone status might affect RBP4 plasma levels.

Moreover, in our study, correlations were done between serum RBP4 levels with inclusive criteria of type 2 diabetes mellitus (FPG & HbA1c) using Pearson’s correlation coefficient. (In Table:5, Figure 5a, b&c). It was observed that serum RBP4 is positively correlated with FPG of diabetic patients (r=0.465), (p<0.001). This signifies a significant increase in serum RBP4 levels with an increase in FPG values in the diabetic group. Similar correlations were given by Cho et al., Park et al., Khalil H et al., Grosjean F et al.³³

Cho et al. stated that fasting plasma glucose levels were found to increase with plasma RBP4 quartile and were found to be an independent factor determining plasma RBP4 levels other than obesity (Yang et al.) The possible mechanism underlying increased fasting plasma glucose levels in subjects with higher plasma RBP4 levels probably concerns increased hepatic glucose output, as RBP4 has been reported to upregulate the expression of PEPCK, a key enzyme in hepatic gluconeogenesis, in the liver. ¹⁵

Also, Khalil et al. concluded that over secretion of RBP4 may negatively affect beta-cell function and included that RBP4 could be one signal from insulin-resistant tissues that beta-cell secretion, and this could be behind the mechanism of increased rbp4 and type 2 diabetes mellitus. In contrast, Lewis et al. suggested RBP4 does not show a correlation with fasting plasma glucose.

In our study findings, serum RBP4 is positively correlated with HbA1c of diabetic patients (r=0.673), (p<0.001). This signifies a significant increase in serum RBP4 levels with an increase in HbA1c levels in the diabetic group. Same findings have been shown by Comucci EB et al., Khalil H et al., and Jia-Ying li et al.³⁴

Khalil et al. proposed several mechanisms linking RBP4 to insulin resistance and type 2 diabetes that has been investigated. The RBP4 gene is located on chromosome 10 (10q23-q24) in humans in a region that contains at least 1 interesting gene, hexokinase 1, the gene encoding a key enzyme in the initial step of glucose metabolism. Insulin signaling in primary human adipocytes was affected by RBP4 by blocking the insulin-stimulated phosphorylation of insulin receptor substrate-1 at serine in position 307. The link between RBP4 and type T2DM could also be mediated through impaired insulin secretion, insulin levels were not measured in the present study.

Lastly in our study, serum RBP4 is positively correlated with the BMI of diabetic patients (r=0.863), (p<0.001). This signifies a significant increase in serum RBP4 levels with an increase in BMI in the diabetic group. Same observations were also found by Rhie YJ et al. and Jia-Ying li et al.²⁴

Additionally, in our study, a higher RBP4 concentration was found in obese individuals than in overweight and normal-weight participants(P<0.001) (Table 6 & Figure 6). Timothy E Graham et al. and Rhie YJ et al. also conducted such group investigations and found the highest serum RBP4 levels in the Obese group. However, reverse levels have been observed by
The difference in results may be attributed to a difference in ethnicity or degree of obesity.

CONCLUSION

The concentrations of serum RBP4 were found to be increased in Type 2 diabetes mellitus patients and related to various clinical parameters of diabetes, suggesting a role in its pathogenesis. Serum RBP4 levels are found to be higher in males than females, although non-significantly, and found to be related to the degree of adiposity as its highest levels are found in obese individuals as compared to overweight and lean. The concentration of serum RBP4 was observed as increased and co-related with various clinical parameters of diabetes i.e., FPG, HbA1c & BMI. Thus, lowering RBP4 levels could be a new strategy for treating type 2 diabetes mellitus, especially in obese individuals.

Taken together, the significant relationship between RBP4, obesity, and different parameters of T2DM like FPG, HbA1c & BMI. Thus, lowering RBP4 levels could be a new strategy for treating type 2 diabetes mellitus, especially in obese individuals.

Findings from a few other clinical studies show discrepancies in the association with RBP4, possibly arising due to differences in studied populations, age, and gender, as well as the different methodological evaluations of RBP4 circulating. Therefore, more mechanistic studies are required to understand the role of RBP4 in the onset and progression of “obesity diseases”.

ACKNOWLEDGMENT

I am grateful to my Guide, Co-Guide, and all technical staff of the Biochemistry department and laboratory for their kind support.

CONFLICT OF INTERESTS

No conflict of interest was declared.

REFERENCES

13. Rocchi M, Covone A, Romeo G, Faraonio R, Colantuoni V. Regional mapping of RBP4 to 10q23----q24 and RB1P to 3q21-q22 in man. Somatic Cell

24. Li JY, Chen XX, Lu XH, Zhang CB, Shi QP, Feng L. Elevated RBP4 plasma levels were associated with diabetic retinopathy in type 2 diabetes. Bioscience Reports. 2018;38: BSR20181100.