Current Medical Applications of Terminalia Chebula: An Overview

Dhiya Altememy¹, Akram Alizadeh²*, Sorayya Ghasemi³*
¹Department of Pharmaceutical, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
²Department of tissue engineering and applied cell sciences, Semnan University of medical sciences, Semnan, Iran
³Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran

Abstract

Medicinal plants have long been used, and many of them are known today as drug production sources. The study and research of medicinal plants used in traditional medicine and their various effects in the treatment of some diseases can help produce new drugs. Terminalia chebula, known as the Haritaki plant, has always been at the top of Chinese, Tibetan, Ayurveda, and Iranian traditional medicines. Its classification is based on the size, shape, and growth of the fruit. We have done a thorough literature search in databases and collected the data and research results indexed in PubMed, Elsevier, and Institute for Scientific Information (ISI), Scientific Information Database, Google Scholar databases, and various books up to 2020. It has pharmacological uses such as neuroprotective, hepatoprotective, cardioprotective, antidiabetic, renoprotective, antifungal, antiviral, antibacterial, antimicrobial, antimutagenic, antiproliferative, antioxidant, antiarthritic, and antifertility properties. It also can act as an immunomodulator and anticaner agent. There are some available drugs obtained from T. chebula. Due to the different and wide pharmacological uses of Terminalia chebula, further studies are required to develop new drugs.

Keywords: Terminalia; Traditional medicine; Pharmacological activities; Haritaki plant

INTRODUCTION

Medicinal plants have long been used and considered around the world. Many of them are known today as the source of drug production. Many others have not yet been sufficiently studied. Therefore, the study and research of medicinal plants used in traditional medicine and their various effects in the treatment of some diseases can help produce new drugs (Benzie and Wachtel-Galor, 2011; Petrovska, 2012; Zhang et al., 2019).

Some characteristics of medicinal plant leads to their usage as an antibacterial agent to treat gastroenteritis and diarrhea (Salimikia et al., 2020). In another study, a list of medicinal plants used as hepatoprotective agents in Shahrekord was investigate.

They demonstrated tables that provide a good basis for more scientific use of medicinal plants and make products with higher efficacy and less harms (Abbasi et al., 2019). Additionally, these plants are used as treatment of viral diseases, due to much lower side effects than other treatments. Nazarian and Rafieian explained effective medicinal plants to treat Hepatitis B that Terminalia Chebula is one of them (Samani and Kopaei, 2018). Terminalia is one of the most widely used medicinal plants in traditional medicine in different parts of the world consisting of 250 species. Since many of these species have been used in a variety of Asian medicinal systems, their biological characteristics have been well studied.

Address for correspondence: Akram Alizadeh, Department of tissue engineering and applied cell sciences, Semnan University of medical sciences, Semnan, Iran,
Email: alizadehbio@gmail.com

Received date: 12 August 2022
Accepted: 14 September, 2022
Published: 07 October, 2022

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: pnjournal@gmail.com

How to cite this article: Altememy D, Alizadeh A, Ghasemi S, Current Medical Applications of Terminalia Chebula: An Overview. J Pharm Negative Results 2022;13(4):183-192
Most of the prescription drugs used to treat diseases nowadays are essentially isolated from plants and/or are semi-synthetic analogues of phytochemicals. Based on the estimates, almost 25% of all drugs used are of plant origin. T. chebula is a plant used in traditional medicine all over the world (Cock, 2015a). One of the main sources of therapeutic agents for illness treatments is medicinal plants like Terminalia (Amalraj and Gopi, 2017). Different therapeutic properties for Terminalia species have been reported until now. Today, species of Terminalia are being tested in studies that were used in traditional drug systems in the past (Cock, 2015a).

T. chebula, commonly known as black- or chebulic myrobalan, is a species of Terminalia. This plant can be found in South Asia from India and Nepal east to southwest China (Yunnan), and south to Sri Lanka, Malaysia, and Vietnam. It is a popular plant in Traditional Chinese medicine, Tibetan medicine, Ayurveda and Traditional Iranian Medicine. It also has some other names like Halela or Halileh in Persian, Harad, and Har in Hindi, Hardi in Gujarati, Hirda in Marathi, Haritaki in Sanskrit and Bengali, Karaka in Telegu, Kadukkai in Tamil and Chebulik myrobalan in English (Bag et al., 2013a; Gupta, 2012a; Rathinamoorthy and Thilagavathi, 2014a). Since there are many different types of phytoconstituents in T. chebula, it has several medicinal effects. A number of chemical constituents have been isolated from the plant extract, including a coumarin conjugated with gallic acids called chebulin, ellagic acid, 2,4-chebulyl-D-glucopyranoside, arjunglucoside I, arjungenin and the chebulosides I and II (Tewari et al., 2017), chebulinic acid (a phenolic acid compound isolated from the ripe fruits) (Lee et al., 2007), gallic acid, ethyl gallate (Saleem et al., 2002), punicalagin, terflavins A, terchebin, luteolin (Lee et al., 2010), Luteic acid (isolated from the bark) (Nierenstein and Potter, 1945), and tannic acid (Chang and Lin, 2012; Upadhyay et al., 2014). Moreover, among the compounds in Haritaki, phenolic carboxylic compounds, phenols, terpenoids and triterpene saponins, flavonoids can be mentioned (Ali and Khan, 2009).

The fruit of the tree possesses various health benefits and has been used as a traditional medicine against various human diseases (Bag et al., 2013a).

This review was prepared to gather published information on pharmacological uses and polyhedral formulation of Terminalia chebula.

Botanical Description

T. chebula tree is 15-24 m high. The leaves are oval or elliptical in shape and have a large pair of large glands at the top of the petiole. In addition, terminal spikes are found in yellowish-white flowers, and they blossom in May-June. The fruits appear in July-December. Additionally, they are green and yellowish grey when they are unripe and ripe, respectively (Babita et al., 2011a; Bag et al., 2013b).

Classification Based On The Size Of The Fruit

(A) Survariharade – They are large, dense, and heavy with about 2 inches long. They are yellowish-brown after being cut with yellowish or darkish brown, pulp and stone. (B) Rangarihara- They are smaller, less wrinkled, and less furrowed than the above variety; it is about one inch long; the epidermis is yellow. When it is cut, it presents a yellow dried pulp a stone. The pulp is less astringent than that of Survariharade. (C) Balaharade – In comparison with the two previous groups, this category is smaller and has a deep brown or black color with a highly wrinkled, dark, or brown epidermis. Additionally, the pulp is dark and homogenous; there is no stone. (D) Java harade- These are the smallest groups, while other characters are similar to those of Balaharade (Rathinamoorthy and Thilagavathi, 2014b).

Classification According To The Shape

(A) Vijaya- it has an alabu shape. It is used in all diseases and can be found in Vindhya Mountains.

(B) Rohini- it has a round shape and is used in Vrana. This shape has been seen in Zansi and other states of India.

(C) Pootana- it has small size, thin mesocarp with a giant seed, externally used; habitat: Sind.

(D) Amirtha- Mesocarp is more used for Shodhana Karma habituation.

(E) Abhay- The fruit has five ribs used in eye diseases; habitat: Champaranya, Himalaya.

(F) Jeevantee- The fruit is golden yellow and is used in all conditions; habitat: Himalaya.

(G) Chetak- The fruit has three ribs and is used as purgative (Rathinamoorthy and Thilagavathi, 2014b).

Classification According To The Growth Of The Fruit

When the size is like cumin seed, it is called Halileh – Zira. When the size is like raw corn, it is called Halileh – Javi. When the size is like a raisin, it is called Halileh – Zangi. When the fruit is greenish-yellow and somewhat rigid, it is called Halileh – Chini. When it is totally mature, it is called Halileh – Asfer. When the fruit is fully matured, it is called Halileh – Kabul (Rathinamoorthy and Thilagavathi, 2014b).

Pharmacological And Therapeutic Uses

T. chebula is called “The king of medicines” or “Mother of medicine” in Tibet because of its power to mend with a wide spectrum of pharmacological properties. For example: hypolipidemic, antibacterial, antifungal, antiviral, anti-anaphylactic, anti-mutagenic, and gastrointestinal motility ameliorating and anti-ulcerogenic properties. Other
properties include hepatoprotective, cardioprotective, antidiabetic, retinoprotective, antiarthritic, wound recuperating, neuroprotective, immunomodulatory, and anti-fertility activities.

T. chebula is routinely used as a conventional pharmaceutical prescription to treat a few disorders such as asthma, sore throat, spewing, hiccough, diarrhea, dysentery, gastroenteritis, wound infections, skin diseases, candidiasis, and urinary tract infections (Bag et al., 2013b; Gupta, 2012b). The different pharmacological properties of this plant and its impact on treating various diseases can be seen in table 1.

Neuroprotective Activity
The neuroprotective activity of methanol and water extracts of T. chebula against H2O2-induced poisonous quality toward the PC12 cell line has been demonstrated. Additionally, the plant is a potential candidate for improving H2O2-induced neurodegenerative diseases (Chang and Lin, 2012). In a study, the positive effects of hydroalcoholic fruit extract of T. chebula on seizures, seizure impairment, and oxidative stress in rats were reported (Kumar et al., 2018a).

T. Chebula And Alzheimer’s Disease
Medicinal plants have regained their importance in treating diseases and disorders, particularly in treating psychiatric and neurological disorders. This plant has therapeutic properties and contains various biochemicals such as; hydrolysable tannins, phenolic compounds, and flavonoids (Afshari et al., 2016a; Sarker et al., 2011a).

Alzheimer’s disease (AD) is a chronic neurodegenerative disease. This illness usually starts slowly and worsens over time. A hypothesis about AD is the deficiency of acetylcholine in the synaptic cleft of the cerebral cortex that causes memory disorders. The ache is located on the postsynaptic membrane. Hydrolysis of acetylcholine can terminate signal transmission. The inhibition of acetylcholinesterase could result in the accumulation of acetylcholine in the synaptic cleft in AD and lead to neurotransmission. Gallotannin, Tannic acid, Gallic acid, Ellagic acid in the extract of T. chebula, have been reported to have anticholinesterase properties. Anti-inflammatory properties of T. chebula in different experimental systems have been shown that could be attributed to Chebulagic acid, Ellagic acid, Gallic acid, and Ellagitannins. It has a major role in oxidative stress in the pathogenesis of AD. We can conclude that this herb is effective in preventing the progression of AD (Afshari et al., 2016b).

Hepatoprotective Activity
T. chebula extract is displayed to impede hepatotoxicity caused by the administration of rifampicin (RIF), isoniazid (INH), and pyrazinamide (PZA) (combination). The ethanolic extract of T. chebula fruit has hepatoprotective activity, known as chebulic and neo chebulic acid, which is able to decrease the cytotoxicity of tert-butyl hydroperoxide (t-BHP)-induced cell in confined rodent hepatocyte experimental analysis (Suchalatha and Shyamala Devi, 2004).

T. Chebula And Hemorrhoid
Hemorrhoid is a widespread anorectal disorder. This is the symptomatic enlargement and abnormally downward displacement of anal cushions. It becomes a disease when is swelling or inflamed. Steroids and flavonoids are used in modern medicine for the treatment of hemorrhoids. Some reports have revealed the positive effects of flavonoids in treating hemorrhoids in Iranian traditional medicine. Anti-bleeding effects of flavonoids and anti-inflammatory effects of T. chebula are impressive in Iranian traditional medicine to treat hemorrhoids (Rahimi and Abdollahi, 2013a). In a study this plant was used in hemorrhoid treatment compared with placebo capsules. The study showed that after four weeks, the herbal intervention (T. chebula) had more positive effects in different variables (pain, constipation, hemorrhoids mass size, and hemorrhoids hemorrhage) and could be a good supplement for the treatment of hemorrhoids (Andarkhor et al., 2019).

Use As An Astringent
Extract of T. chebula is used as an astringent, digestive, antiseptic, alterative, laxative, diuretic, and carminative (Muhammad, 2012a; Patel et al., 2020).

Cardioprotective Activity
Cardioprotective impact of ethanolic extract of T. chebula fruit was observed in rodents, in which isoproterenol was used to damage cardiac muscles. Moreover, it can enhance the isoproterenol effect on lipid peroxide formation and the protective effects of enzyme markers in rodents (rats).

It has also been declared that isolated frog heart model has cardioprotective activity (Bag et al., 2013b; Chang and Lin, 2012; Suchalatha and Shyamala Devi, 2004). Some patients with type 2 diabetes are faced with cardiovascular risk, and using T. chebula can minimize the cardiovascular risk factors compared to placebo (Pingali et al., 2020).

Hypolipidemic/Hypocholesterolemic Activity
Based on the previous studies, T. chebula has an essential decrease in total cholesterol and triglycerides (Rathinamooorthy and Thilagavathi, 2014b).

Antidiabetic And Ophthalmic Problems
T. chebula extract in rats has been shown a dose-dependent effect on diabetes mellitus. Furthermore, observable retinoprotective activity was also exhibited in T. chebula-treated rats (Bag et al., 2013b; Gupta, 2012b). Singh et al. investigated the antidiabetic and wound healing activity of methanolic extract of the seeds of T. chebula. They observed this feature by effective stimulation of insulin secretion (Singh et al., 2017). The effect of T. chebula hydro-ethanolic
extract in an herbal combination with two other materials was evaluated in streptozotocin (STZ)-induced diabetic rats. This herbal combination acted as an anti-diabetic, antioxidant, and hypolipidemic agent (Sotoudeh et al., 2019a).

Myrobalan is helpful in visual acuity and drainage from the eyes. It is a good eye tonic. This plant is used for epiphora and eye-burning when soaked in rosewater (Jokar et al., 2016a).

Antifungal Activity

A liquid extract of T. chebula demonstrated an antifungal property against various dermatophytes, including Epidermophyton, Floccosum, Tricophytonrubrum, and Microsporumgypseum yeasts, e.g., Candida albicans. Aqueous, alcoholic, and ethyl acetate extract of T. chebula leaves were effective against five pathogenic fungi including Helminthosporium tetramera, Alternaria brassicicola, A. alternate, A. niger, and Aspergillus flavus (Bag et al., 2013b; Gupta, 2012b).

The antifungal property of T. chebula was compared to gold standard amphotericin B (control) against Candida albicans. The results showed that higher concentrations of T. chebula had higher antifungal activity (Manipal et al., 2019).

Antiviral Activity

Since acetone extract of T. chebula has low cost, convenient preparation, and strong impact, it is used to treat pandemic swine Flu A infection. Gallic acid and three galloyl glucose are four human HIV-1 integrase inhibitors of T. chebula. Galloyl had a significant role in the 3'-processing inhibition of HIV-1 integrase (Gupta, 2012b).

Antimicrobial Activities

T. chebula has been shown antibacterial activities against gram-positive and gram-negative bacteria such as Pseudomonas aeruginosa ATCC 27853, Salmonella typhi SSFP 4S, S. aureus ATCC 25923, Staphylococcus epidermidis MTCC 3615, and Bacillus subtilis MTCC 441 (Gupta, 2012b).

Additionally, T. chebula is highly effective against H. pylori. H. pylori is responsible for stomach cancer, gastric ulcers, and gastritis. The aqueous extract of T. chebula forcefully inhibited the growth of Streptococcus mutans (Aneja and Joshi, 2009). Spraying T. chebula has inhibitory effects against bacteria such as strain X-100 of the bacterium Xanthomonas campestris, Klebsiella (Agrawal et al., 2010), and Shigella intestinal bacteria (Khan and Jain, 2009; Kim et al., 2006). Alcoholic extract of T. chebula has a powerful antibiotics activity against multidrug-resistant Escherichia coli (Gupta, 2012b). Additionally, in a study P. mirabilis, K. pneumonia, A. baylyi, and P. aeruginosa were used to show the growth inhibitory activity of T. chebula fruit extracts alone and in combination with conventional antibiotics (Mandeville and Cock, 2018). This property of T. chebula was used in combination with recycled polyesters to expand the range of their application because of increasing antibacterial activities (Lee et al., 2020). Additionally, in vitro antibacterial activity of ethyl acetate extract of T. chebula was shown compared to standard amoxicillin for treatment of subclinical mastitis in three breeds of cattle in India (Kher et al., 2019).

The antibacterial activity of T. chebula fruit extract was applied in combination with silver nanoparticles (AgNPs) to treat various diseases. The preliminary bioactivity evaluations demonstrated that the bio-conjugation of AgNPs, using T. chebula fruit extract, significantly enhanced the antibacterial potentials of the latter. The higher sensitivity of B. subtilis compared to P. aeruginosa in antibacterial activity of the as-prepared AgNPs was explained (Ankegowda et al., 2020).

The antimicrobial activity of T. chebula against the following organisms has been studied by the disk diffusion method: Bacillus subtilis, s. aureus, staphylococcus epidermis, Escherichia coli, Staphylococcus flexineria, and pseudomonas aeruginosa (Rathinamoorthy and Thilagavathi, 2014b). Two main ingredients of T. chebula against methicillin-resistant S. aureus with antimicrobial activity include Gallic acid and ethyl ester (Chattopadhyay and Bhattacharyya, 2007). T. Chebula can be used in combination with other materials to improve antimicrobial activities; for example, the biogenic synthesis of silver palladium bimetallic nanoparticles (AgPd NPs). The disc diffusion method results showed AgPd NPs antibacterial activity against gram-positive bacterial strains like MRSA 11, MRSA 56, and gram-negative bacterial strain P. aeruginosa compared to the positive control (Sivamaruthi et al., 2019).

Anticancer Properties

Cancer is an irregular growth of cells that develops and spreads through uncontrolled cell division. Cancer is not one disease but a group of more than one hundred disorders distinction (Chavan et al., 2013). Healthy growth and development of cells depend on the fine-tuning of inhibitory and excitatory pathways. Proto-oncogenes and tumor suppressor genes control the cell cycle. Another common feature of many cancers is the chromosomal instability correlated with oxidative stress (Cock, 2015a; Hanahan and Weinberg, 2000a). Oxidative stress leads to genetic instability and creates new tumors.

Consuming high levels of antioxidant species of Terminalia chebula block genetic instability and, therefore, blocks tumorigenesis, which might be effective in cancer treatment (Cock, 2015b).

Triphala has been prepared from Amalaki (Emblica officinalis), Haritaki (Terminalia chebula), and Bibhitaki (Terminalia bellirica). Various cancer cell lines such as thymic lymphoma cells, human breast cancer, human prostate cancer, and human pancreatic cancers are affected by cytotoxic effects of Triphala (Cock, 2015b; Singh et al., 2001).
T. chebula has been applied in lung cancer. Antiproliferative activity of T. chebula was studied by MTT (a colorimetric assay for assessing cell metabolic activity) methods to study human lung cancer and mouse lung cancer cell lines. The evidence indicated that T. chebula acted by regulating the Bcl-2 family protein-mediated mitochondrial pathway. The investigation of the antiproliferative effect of T. chebula on breast cancer cell line (MCF-7) and normal breast epithelial cells (MCF-10a) was conducted. The changes in body weight, along with other tumor parameters such as tumor incidence, tumor volume, serum biochemical parameters, histopathological findings of breast tissue, tumor burden, and tumor weight were measured. The antioxidant activity of the plant extract was related to its use against cancer treatment (Henry et al., 2020). Ethanolic extract of T. chebula displayed cytotoxic effects on MCF-7 cells. The anticancer activity of ethanolic extract of T. chebula fruits in breast cancer (MCF-7) cell lines has been shown (Priscilla, 2013; Sarker et al., 2011b).

Investigations have shown that Gallic acid (GA) in T. chebula is the key factor in suppressing esophageal carcinoma growth. GA molecular mechanism showed a decrease in Ki-67 expression and promotion in cell apoptosis associated with the inhabitation of the Hippo pathway (Sun and Wang, 2020). T. chebula as a natural agent is a suitable candidate for further investigation in the treatment and cancer prevention (Wang et al., 2015).

Anaphylactic Effect

Following the induction of anaphylactic shock, the extract of T. chebula reduced the serum histamine level showing an intense anti-anaphylactic activity (Babita et al., 2011b). The water solvent part of T. chebula had a significantly increasing impact on anti-dinitrophenyl IgE-induced TNFα generation from rat peritoneal mast cells showing a strong antianaphylactic activity (Bag et al., 2013b).

Antimutagenic And Antiproliferative Activities

Studies have shown that phytochemicals in acetone extract of T. chebula have antimutagenic and anticarcinogenic properties. Additionally, to examine the growth of several malignant cell lines, including human (MCF-7) and mouse (S115) breast cancer cell lines, a human osteosarcoma cell line (HOS-1), a human prostate cancer cell line (PC3), and a non-tumorigenic, immortalized human prostate cell line (PNT1A) using assays for proliferation (3H-thymidine incorporation and coulter counting), cell viability (ATP determination) and cell death (flow cytometry and Hoechst DNA staining), the methanolic extract of T. chebula was used. The extract decreased cell viability, inhibited cell proliferation, and induced cell death in a dose-dependent manner in all cell lines. The ability of potent dual inhibition against COX and 5-LOX in ethanolic fruit extract of T. chebula, chebulagic acid has also been demonstrated. It also showed antiproliferative activity against HCT-15, COLO-205, MDA-MB-231, DU-145, and K562 cell lines (Gupta, 2012b). In a study, the dried fruits of T. chebula were powdered and extracted with 95% ethanol. The antimutagenic activity was determined by the Ames test using TA98 and TA100 strains of Salmonella typhimurium. Gallic acid and ellagic acid are two major compounds of the ethyl acetate portion, which may be responsible for potent antimutagenic activity (Singamaneni et al., 2019).

Antioxidant Activity

Aqueous extract of Terminalia chebula acts as an antioxidant agent. In as much as it can protect the cellular organelles from the radiation actuated harm, it may be considered a likely radioprotector (Rathinamoorthy and Thilagavathi, 2014b). The results indicated that triethyl chebulate was a potent antioxidant and free-radical scavenger, which might contribute to the anti-oxidative ability of T. chebula. Because of the presence of the enzymatic and non-enzymatic antioxidants in T. bellerica and T. chebula, the aqueous extracts of both plants have antioxidant properties. They can have anti-microbial properties in various diseases, too (Gupta, 2012b).

Moreover, regarding the studies, the dried fruit of T. chebula has antioxidant activities. The antioxidant activities of neutral polysaccharide, isolated by ion-exchange chromatography, were determined using free radical scavenging (DPPH and superoxide) and FRAP assays. The results suggested that an amylopectin-type polysaccharide (TFP-a) could be used as a potential natural antioxidant (Jeong et al., 2019). Exposure to diazinon, a synthetic insecticide, caused liver dysfunction, and weakened the antioxidant system. Regarding previous studies, antioxidants can protect cell membrane integrity and decrease enzyme leakage through free radical scavenging activities. The presence of flavonoids and other compounds in T. chebula extract has protective effects on diazinon-induced liver injury (Ahmadi-Naji et al., 2017). In another study, the specific phenolic compositions of T. chebula led to the identification of rutin, catechin, caffeic acid, gallic acid, ellagic acid, epicatechin, and quercetin as antioxidant compounds. This composition was determined by high-performance liquid chromatography (Sabir et al., 2020).

Cellular Aging Effect

T. chebula and T. arjuna with a high voluminosity of phenolic ingredients showed strong antioxidant and anti-senescent properties (Afshari et al., 2016b). Ethanol extract of T. chebula demonstrated a significant inhibitory effect on cellular senescence (Muhammad, 2012a).

Immunomodulatory Effect

Results also indicated the immunomodulatory effects of T. chebula by increasing the concentrations of antioxidant enzymes, GSH, and proliferation of T and B cells as immune cells (Rathinamoorthy and Thilagavathi, 2014b).

Antiarthritic Activity

According to the studies, this plant is an effective agent in the treatment of rheumatoid arthritis. A significant inhibition of joint swelling was observed in hydroalcoholic extract of T.
chebula compared with control in both formaldehyde-induced and CFA-induced arthritis (Gupta, 2012b).

Anti-Inflammatory Activity

T. chebula plant possesses gallic acid which is one of the main endogenous phenolic acids with anti-inflammatory properties (Hsu et al., 2007; Muhammad, 2012a). This plant showed anti-inflammatory properties by regulating nitrite and TNF-α production, iNOS, COX-2 levels, and translocation of NF-kB protein on RAW 264.7 cells (Shendge et al., 2020). Additionally, the positive effect of the chloroform extract of T. chebula in NO secretion reduction has been reported. The inhibition activity in COX2, IL-1β, IL-6, and TNF-α expressions were confirmed. Based on the results, T. chebula could be used as a reliable anti-inflammatory candidate herb in addition to the many chemical compounds available in the medical markets (Farhan et al., 2020).

Wound Healing

The survey revealed that T. chebula has a significant impact on wound healing. Topical management of alcoholic extract of T. chebula on skin wounds in rats is restored quickly in vivo. T. chebula could stimulate fibroblasts; therefore the synthesis of glycosaminoglycans and collagen deposition increases and accelerates wound healing significantly (Sawant et al., 2013).

Dermatologic And Cosmetic Uses

The extract of T. chebula is used as a depigmenting ingredient in cosmetics. It has been shown that methanol extract of T. chebula can be an inhibitor of the melanin (Jin et al., 2006; Muhammad, 2012b). Myrobalan improves paleness, diminishes greying of the hair, and acts as a hair tonic. It is also useful in the treatment of leprosy (Jokar et al., 2016b).

Dental And Oral Cavity

The plant improves the gums and teeth and is useful in oral ulcers treatment (Jokar et al., 2016a). Moreover, the ethanol extracts of T. chebula helps prevent periodontal disease induced by dental plaque bacteria (Sars-cov-2, et al., 2020).

Anticaries Activity

Acetone, ethanol, methanol extract of T. chebula has powerful effects on dental caries. Hence, they have been considered as antimicrobial agents against dental caries (Bag et al., 2013b). Rinsing the mouth with a 10% the extract can inhibit the glycolysis of salivary bacteria for up to 90 minutes (Sawant et al., 2013).

In a research, different medicinal plants have shown anticaries effects against S. mutans glucosyltransferases (gft). Regarding the final result of kinetic analysis, T. chebula had considerable inhibitory action (Mandava et al., 2019).

Antifertility Activity

The oral administration of T. chebula’s bark began histological modifications in seminiferous tubules of the cured mice. Fructose levels in seminal vesicles and sialic acid in epididymal have significantly decreased in comparison with control. The sperm parameters of all the mice extracts-treated groups showed a significant reduction compared to controls. The results suggest the adverse effects of aqueous bark extract of T. chebula on the male reproductive system (Gupta, 2012b).

Miscellaneous Uses

In the Unani system it is utilized as a blood purifier. The pulp of the fruit was used as pills, dysentery, chronic diarrhea, constipation, flatulence, asthma, urinary disorder, vomiting, hiccup, intestinal parasites, ascites, and enlarged spleen and liver. Both leaves and fruits of T. chebula are also utilized as mordant (Muhammad, 2012a).

Traditional Medicine Values

In traditional medicine, in Unani, Ayurveda, and homeopathic medicine, the fruit of T. chebula has been used to treat geriatric diseases to improve memory and brain functions. This plant is used in anti-aging therapies, enhancing memory and brain function. The yellow color of the fruit indicates that it is ripe. If the yellow fruit dries, it hardens and is known as yellow myrobalan (Afshari et al., 2016b).

The most important sources of information, reference books, regarding Halileh (T. chebula) in TIM (Traditional Iran Medicine) are as follows: The Avicenna's Canon, At-Tibbieh, Axirazam, Sharhe-Asbab, Al-Alaieh, Al-Igraz, Kholasat-Al-Hekmaa, Akbari medicine, and Al-Mabahis (Jokar et al., 2016a).

T. chebula is one of the most important plants in traditional medicine. Myrobalan is called Halileh in TIM textbooks in Farsi, Ah-halilaj in Arabic, and Harharu in Hindi (Jokar et al., 2016a). The following uses are the most important ones indicated in traditional medicine:

Psychological Uses

According to the TIM sources reports, memory retention and brain activity is strengthened by myrobalan. It is reported to have healing properties for bewilderment, headache, melancholy, depression, obsession, amnesia, facial paralysis, anthropophobia, vertigo, and insomnia (Jokar et al., 2016a).

In a study, the anti-amnesic effect of T. chebula extract (TCE) in mice induced by scopolamine was studied. TCE reduced hippocampal acetylcholinesterase activities and increased acetyltransferase and acetylcholine levels in the scopolamine-induced model. Also, the suppression of scopolamine-induced oxidative damage is done by TCE treatment with the ease of increasing levels of reactive oxygen species, nitric oxide, and malondialdehyde (Kim et al., 2018).
Hepatic, splenic, and urinary effects

The liver tonic of myrobalan is applicable in liver temperament moderating and generalized swelling treatment and spleen pain, as a diuretic, and treat polypus (Jokar et al., 2016a).

Cardiopulmonary Effects

Myrobalan is useful in heart refreshing, heart palpitations, and tachycardia treatment (Jokar et al., 2016a).

Gastrointestinal Effects

T. chebula has been used to treat human peptic ulcers and gastritis. T. chebula has a strong depleting impact and increases gastric emptying time. The balance of this action, which is done with a defensive effect on the gastrointestinal mucosa, leads to an improvement in the secretory status of Brunner’s gland. This gland is effective in the preservation against duodenal ulcer (Safavi et al., 2016). Myrobalan tonic causes disgorging controlling, diarrhea stomach moisture absorption, and stomach retention and appetite enhancement (Jokar et al., 2016a).

Other Effects

Opening the blockage of the bile and preventing the evolution and development of burning black bile are other effects of using myrobalan. It is effective in combined fever treatment, diluting humor, and laxative to dry dampness as a humor solvent, for joint pain and to boil humor relief (Jokar et al., 2016a).

Terminalia Chebula And Available Drugs In The Market

As already mentioned, Triphala has historically been used to relieve constipation. Triphala has triggered the death of cancer cells and significantly decreased the size of the tumors (Kumar, 2014). The drugs produced from this plant are known as Haritaki and Triphala in foreign countries and Hemolax in Iran. One of the three compounds in Triphala, Harituki (T. chebula), is considered to be one of the best herbs for balancing Vata dosha. It is protecting the body's natural cleansing process. It is effective in gradually removing accumulated natural toxins in the GIT (gastrointestinal tract). Rejuvenating the skin strengthens the tissues and supports the proper function of the colon, lungs, liver, and spleen. Haritaki has been used in the past as a treatment for all Vata-related imbalances. Haritaki is highly respected in India as it is believed to increase energy, intelligence, and consciousness.

Conclusion

The studies of T. chebula, as a medicinal plant in traditional medicine, led to an increase in information about its various characteristics and effects on the treatment of some diseases in the production of new drugs. T. chebula (Haritaki) is one of the most important medicinal plants used in Ayurveda, Chinese, Tibetan, and Iranian medicines because of having some pharmacological properties. T. chebula is known as the mother of medicine. It has a biodiversity of both nutritional and medicinal components. Triphala as an herbal remedy plays a vital role in treating various diseases. Medicinal plants have regained popularity among scientists in many countries. There is an urgent need to investigate its phytoconstituents and biological activities to develop an effective, safe, and cheap herbal product.

This article provides information about the various properties of the plant in Indian and Iranian traditional medicine and other regions worldwide; such information can be used to prepare and develop new herbal medicines.

Acknowledgment

The authors would like to thank the Shahrekord University of Medical Sciences and Semnan University of Medical Sciences for their supports.

Authors’ Contribution

AA contributed to designing the study, performed data collection, DA manuscript preparation. SG supervised and edited the manuscript. The final version of the manuscript was confirmed by all authors.

Conflict Of Interest

Authors declare no conflict of interests.

Ethical Consideration

No ethical approval was required for this review article.

Funding/Support

This research did not receive any specific grant from funding agencies in the public, commercial, or profit sectors. There has been no financial support for this work.

References

<table>
<thead>
<tr>
<th>Property</th>
<th>Application</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroprotective</td>
<td>Useable in seizures, seizure-induced cognitive impairment, and oxidative stress</td>
<td>(Kumar et al., 2018b)</td>
</tr>
<tr>
<td></td>
<td>Having a decrease in cytotoxicity of tert-butyl hydroperoxide (t-BHP)-induced cell in confined rodent hepatocyte experimental analysis.</td>
<td>(Suchalatha and Shyamala Devi, 2004)</td>
</tr>
<tr>
<td>Hepatoprotective</td>
<td>Minimizing the risk factors of cardiovascular compared to placebo in type 2 diabetes patients</td>
<td>(Singh et al., 2017)</td>
</tr>
<tr>
<td>Cardioprotective</td>
<td>Having antidiabetic and wound healing activity effectively stimulate the secretion of insulin</td>
<td>(Sotoudeh et al., 2019b)</td>
</tr>
<tr>
<td>Antidiabetic and retinoprotective</td>
<td>Has an essential decrease in total cholesterol and triglycerides</td>
<td>(Rathinamoorthy and Thilagavathi, 2014b)</td>
</tr>
<tr>
<td>Hypolipidemic/</td>
<td>Effective against five pathogenic fungi such as; Alternaria brassicicola, Aspergillus flavus, A. alternate, A. niger, and Helmithosporium tetramer</td>
<td>(Bag et al., 2013b; Gupta, 2012b)</td>
</tr>
<tr>
<td>Hypocholesteremic</td>
<td>Treat pandemic swine Flu, had a major role in the inhibition of HIV-1 integrase</td>
<td>(Gupta, 2012b)</td>
</tr>
<tr>
<td>Antifungal</td>
<td>Highly effective against Salmonella typhi SSFP 4S, Staphylococcus epidermidis MTCC 3615, S. aureus ATCC 25923, Bacillus subtilis MTCC 441 and Pseudomonas aeruginosa ATCC 27853</td>
<td>(Gupta, 2012b)</td>
</tr>
<tr>
<td>Antiviral</td>
<td>Antimicrobial activity against Bacillus subtilis, staphylococcus aureus, staphylococcus epidermis, Escherichia coli, Staphylococcus flexineria, and pseudomonas aeruginosa by the disk diffusion method:</td>
<td>(Gupta, 2012b)</td>
</tr>
<tr>
<td>Antimicrobial</td>
<td>Including promising antimutagenic and anticarcinogenic phytochemicals, Cancer cell viability reduction, Cell proliferation inhibition, and cell death induction in a dose-dependent manner</td>
<td>(Gupta, 2012b)</td>
</tr>
<tr>
<td>Anticaries</td>
<td>Protect the cellular organelles from the radiation actuated harm, a strong antioxidant and free-radical scavenger</td>
<td>(Gupta, 2012b; Rathinamoorthy and Thilagavathi, 2014b)</td>
</tr>
<tr>
<td>Antioxidant</td>
<td>As a disease-modifying agent in the treatment of rheumatoid arthritis</td>
<td>(Gupta, 2012b)</td>
</tr>
<tr>
<td>Antiarthritic</td>
<td>Having the adverse effects on the reproductive system</td>
<td>(Gupta, 2012b)</td>
</tr>
<tr>
<td>Antifertility</td>
<td>Increasing the concentrations of antioxidant enzymes, GSH, and proliferation of T and B cells as immune cells</td>
<td>(Rathinamoorthy and Thilagavathi, 2014b)</td>
</tr>
<tr>
<td>Immunomodulatory</td>
<td>Reduces the serum histamine level showing a strong anti-anaphylactic activity</td>
<td>(Babita et al., 2011b)</td>
</tr>
<tr>
<td>Anaphylactic</td>
<td>Stimulate fibroblasts; therefore, the synthesis of glycosaminoglycans and collagen deposition increase and it accelerates wound healing significantly</td>
<td>(Mandava et al., 2019)</td>
</tr>
<tr>
<td>Wound healing</td>
<td>Is a suitable candidate for further investigation in the treatment and cancer prevention (lung, breast, prostate, and human pancreatic)</td>
<td>(Hanahan and Weinberg, 2000b; Priscilla, 2013; Wang et al., 2015)</td>
</tr>
<tr>
<td>Anticancer</td>
<td>Having anti cholinesterase properties and preventing the progression of Alzheimer</td>
<td>(Rahimi and Abdollahi, 2013b)</td>
</tr>
<tr>
<td>Alzheimer</td>
<td>Positive effects in different hemorrhoids’ variables (pain, constipation, hemorrhoids mass size, and hemorrhoids hemorrhage)</td>
<td>(Muhammad, 2012a)</td>
</tr>
</tbody>
</table>