Solubility Enhancement of Meloxicam by Binary and Ternary Solid Dispersion

Marwah M. Hareeja1, Ishraq K. Abbas2*, Madiha F.3, Maha W. Alghazali4

1,2 Faculty of Pharmacy, Alrafidein University College /Iraq
3, 4 Faculty of dentistry, Alrafidein University College/Iraq
Email: ishraqalmualla@yahoo.com

Abstract

The purpose of this study was to improve the solubility and dissolution rate of meloxicam (ME), a water-low soluble analgesic, using binary and ternary solid dispersion by solvent evaporation and kneading methods. Two hydrophilic polymers, polyethylene glycol 4000 (PEG 4000) and polyvinyl pyrrolidine K30 (PVP K30), were used in the solid dispersion of (ME), in different drug to polymer ratio. The drug content, percentage yield, and X-ray Diffraction (XRD) and FTIR spectroscopy analyses were used to analyze the pure drug (ME) and its solid dispersion with and without various polymers. The findings of this research revealed a decrease in crystallinity and a change in the drug's crystal habit. The prepared solid dispersions' solubility and dissolution rate were compared to those of the untreated medication. The solubility and dissolution profiles of all prepared formulae improved significantly (p<0.05). The best results were obtained using a formula made up of PVP K30 and cross carmelose (CC) in a 1:3 drug-to-polymer ratio with a 5% W/W CC content.

Keywords: Meloxicam, solid dispersion, kneading method solvent evaporation method

INTRODUCTION

Amongst the route of drug administration one can take into consideration the oral route as a broadly wide impressive route because patients can consume medication by themselves, easily production, administration with an easy, correct dose, safely and economical route. Despite the fact that the oral route of drug administration is preferred, it can be a difficult and wasteful means of delivery for many pharmaceuticals for a variety of reasons. Restricted medication absorption, resulting in low bioavailability, is one of the most common issues that might arise when administering an active agent orally. A range of variables can limit drug absorption from the gastrointestinal (GI) tract, with low drug solubility and/or permeability across biological membranes being the most major culprits (1).

A solid dispersion is a type of solid compound that consists of at least two elements, usually a hydrophilic matrix and a hydrophobic medication.

A crystal or amorphous matrix can be used. The medications might be disseminated molecularly in amorphous (clusters) or crystalline (particles) form. Solid dispersions are one of the most successful grand designs to enhance the dissolution of drugs with low solubility. According to the physical state of the solid dispersion, formulation of poorly soluble compounds as solid dispersions may result in particle size reduction, enhanced wettability, reduced agglomeration, changes in the physical properties of the drug molecules, and may be a molecular dispersion (2).

Address for correspondence: Ishraq K. Abbas, Faculty of Pharmacy, Alrafidein University College /Iraq, Email: ishraqalmualla@yahoo.com

Received date: 20 August 2022
Accepted: 05 September, 2022
Published: 10 October, 2022

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: pnrjournal@gmail.com

How to cite this article: Hareeja M M, Abbas K I, Madiha F, Alghazali W M, Solubility Enhancement of Meloxicam by Binary and Ternary Solid Dispersion, J Pharm Negative Results 2022;13(4):116-124.
Meloxicam is an enolic acid oxicam derivative and a nonsteroidal anti-inflammatory (NSAID) and analgesic medication. Rheumatoid arthritis, osteoarthritis, and other joint ailments are commonly treated with it (3). Chemically ME (C14H13N3O4S2) is 4-Hydroxy-2-methyl-N-(5-methyl-2-thiazolyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide. It possesses a pKa (1.1, 4.2) dissociation constant and partition coefficient Log P (octanol/water), 3.43 (4). ME is a relatively permeable drug with low solubility and dissolution rate, both of which are absorption rate limiting factors (5). The objective of this study is to use solid dispersion to improve ME’s solubility and dissolving rate technique.

Fig.1: Structural formula of ME

Materials and Method

Materials

Meloxicam (ME), PVPK30 (HA), cross carmelose (cc), were purchased from, Hyperchem / China. All of the other chemicals and reagents utilized were of analytical grade.

Method

Meloxicam solid dispersion preparation:

Solvent evaporation and kneaded mixtures of ME with carriers were made in varied ratios to optimize drug to carrier ratio.

Solvent Evaporation Method

This process entails combining ME and a polymer in a binary system or two polymers in a ternary system in ethanol, then evaporating the entire solvent. The combination is then made in various ratios as illustrated in the diagram (table 1). In a beaker, polymer and drug were added to ethanol, and the solution was vigorously swirled on the magnetic stirrer until the ethanol was completely evaporated then dried overnight and stored in dissector (6).

Kneading method

The carrier is penetrated with water and turned into a paste in this manner. The drug is subsequently added and kneaded for a specific amount of time. After that, the kneaded mixture is dried and, if necessary, sieved (7).

Table 1: Composition of Solid Dispersion by Solvent Evaporation and Kneading Methods.

<table>
<thead>
<tr>
<th>Formula</th>
<th>ME Weight ratio</th>
<th>PEG4000 Weight ratio</th>
<th>PVPK30 Weight ratio</th>
<th>CC % w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>SD-3</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SD-4</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>SD-5</td>
<td>1</td>
<td>1.5</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>SD-6</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>SD-7</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
Evaluation of MEL solid dispersion powder

Drug Content

The percentage of drug content of the solid dispersion formed can be determined by crushing and dissolving fixed amount of the powder in sufficient volume of methanol in 100ml volumetric flask and sonicate for 30 minute the solution diluted to the desired level with methanol. The solution was then filter through 0.45Mm Whatman filter paper, and then analyzing by UV spectrophotometer at 362nm (8).

Percentage yield

The product yield of formula of solid dispersion was measured by determining the weight of resulted powder after drying with respect to initial weight of drugs and polymers used in formulation of solid dispersion as in equation (9)

\[
\text{Yield\%} = \left(\frac{\text{WSD}}{\text{Wdp}}\right) \times 100
\]

WSD practical weight of solid dispersion
Wdp theoretical weight of drug and polymer

Solubility study of Meloxicam and solid dispersion

In a closed glass tube, an excess of MEL and prepared formulae were added to 10ml of distilled water. The tubes were submerged in a shaker water bath at 37°C for 72 hours. The tubes were then taken out of the shaker water bath. The concentration of MEL solubilized was evaluated using a UV-spectrophotometer at their 362nm wavelength after samples were filtered using a 0.45 m filter membrane (10).

Dissolution study of solid dispersion

The release profile of ME from formulated solid dispersion was determined by using (paddle) type II USP dissolution test apparatus. A weighed amount of solid dispersion equivalent to 7.5 mg drug was add to (900) ml of phosphate buffer (pH 7.5) media kept at 37± 0.5°C at rotation speed of 75 rpm. sink condition was maintained throughout the study. 5 mL of material was removed at specified intervals and replaced with an equivalent volume of fresh sample kept at the same temperature. The samples were then filtered through 0.45 Mm filter membrane and analyzed spectrophotometrically at 362nm (11)(12)
Table 2: Drug Content, %Yield and solubility of Pure and Solid Dispersion of Meloxicam by Solvent Evaporation Method (SDs)

<table>
<thead>
<tr>
<th>Formula Number</th>
<th>MEL Weight ratio</th>
<th>PEG4000 Weight ratio</th>
<th>PVPK30 Weight ratio</th>
<th>CC % w/w</th>
<th>Drug content %</th>
<th>Yield %</th>
<th>Aqueous solubility mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>0.007</td>
</tr>
<tr>
<td>SD1s</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>95.7</td>
<td>86.7</td>
<td>0.0091</td>
</tr>
<tr>
<td>SD2s</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>96.5</td>
<td>90.5</td>
<td>0.012</td>
</tr>
<tr>
<td>SD3s</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>95.45</td>
<td>89.8</td>
<td>0.0098</td>
</tr>
<tr>
<td>SD4s</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>97.89</td>
<td>85.99</td>
<td>0.0185</td>
</tr>
<tr>
<td>SD5s</td>
<td>1</td>
<td>1.5</td>
<td>1.5</td>
<td>-</td>
<td>98.23</td>
<td>96</td>
<td>0.014</td>
</tr>
<tr>
<td>SD6s</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>98.33</td>
<td>97</td>
<td>0.0095</td>
</tr>
<tr>
<td>SD7s</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>5</td>
<td>95.9</td>
<td>94</td>
<td>0.0221</td>
</tr>
</tbody>
</table>

Table 3: Drug Content, %Yield and solubility of Pure and Solid Dispersion of Meloxicam by kneading Method (SDk)

<table>
<thead>
<tr>
<th>Formula Number</th>
<th>MEL Weight ratio</th>
<th>PEG4000 Weight ratio</th>
<th>PVPK30 Weight ratio</th>
<th>CC % w/w</th>
<th>Drug content %</th>
<th>Yield %</th>
<th>Aqueous solubility mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEL</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>0.007</td>
</tr>
<tr>
<td>SD1k</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>98.9</td>
<td>95.5</td>
<td>0.0129</td>
</tr>
<tr>
<td>SD2k</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>99.6</td>
<td>98.5</td>
<td>0.022</td>
</tr>
<tr>
<td>SD3k</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>96.15</td>
<td>96.2</td>
<td>0.0189</td>
</tr>
<tr>
<td>SD4k</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>95.35</td>
<td>99.4</td>
<td>0.0547</td>
</tr>
<tr>
<td>SD5k</td>
<td>1</td>
<td>1.5</td>
<td>1.5</td>
<td>-</td>
<td>96.49</td>
<td>98</td>
<td>0.0205</td>
</tr>
<tr>
<td>SD6k</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>100.1</td>
<td>96</td>
<td>0.019</td>
</tr>
<tr>
<td>SD7k</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>5</td>
<td>98.7</td>
<td>98.8</td>
<td>0.205</td>
</tr>
</tbody>
</table>

In-vitro Dissolution study

The results of solubility study show that the kneading method show higher solubility than those prepared by solvent evaporation method so the formulas (SDk 3,4,6,7) select to investigate the influence of polymer type and ratio on medication dissolving rate.

all these four formulas show increase in dissolution rate in comparison of pure drug may be due to the wettability effect of hydrophilic polymer and conversion of crystal form of drug to amorphous form (15).

incorporation of CC 5% in SDk7 show further improvement in rate of drug release in comparison with other formulas due to availability of rich hydrophilic environment in its vicinity because of morphology and high water uptake capability of superdisintegrant (CC) (16).

SDk6 show increase in time of solubility in comparison with other prepared formulas by kneading method due to increase in thickness of diffusion layer in viscous solution result from higher concentration of polymers. This outcome is consistent with the Noyes–Whitney equation, which describes the dissolution process (17).
Fig. 2: In vitro release study of MEL and prepared formula by kneading method in phosphate buffer pH = 7.5

Ftir Study

Figures (5-8) show the FTIR spectrum of pure ME, PVP K30, CC, PM, and SD7K, respectively.

Pure ME's spectra included three distinct peaks: 3292 cm⁻¹ (N-H stretching vibrations), 1620 cm⁻¹ (C=N stretching vibrations), and 1162 cm⁻¹ (S=O stretching vibrations). The reported results were consistent with earlier research (18) (19).

The stretching vibration of the carbonyl group was the most noticeable peak in the IR spectra of PVP K30, which appeared around 1689.53 cm⁻¹. The FTIR spectrum of PVP K30 revealed a large peak around 3000-3700 cm⁻¹ due to O-H stretching vibrations of absorbed water (20).

FTIR spectrum of SD7K, the physical mixture of drug and polymers for SDK7 show no significant shift reduction in intensity of peaks of ME, and of PVP K30, which indicates there was no interaction between drug and polymer.

Fig. 3: FTIR spectrum of ME
Fig. 4: FTIR spectrum of PVP K30

Fig. 5: FTIR spectrum of CC

Fig. 6: FTIR spectrum of Physical mixture
X-ray diffraction (XRD)

The diffractogram for ME, physical mixture of ME and polymers that utilized in the formulation of the SDK7, and SDK7 are viewed in (figure 9 through 11). The diffractogram of pure drug exposed several diffraction peaks with high intensities at 13.08°, 14.8°, and 18.4° at 2-θ indicating the drug’s crystal nature.

Figure 9 shows the XRD patterns of MEL, solid dispersion, and physical mixing. Sharp peaks at diffraction angles (2) of 24°, 8°, and 14° indicate the presence of crystalline drug in ME's x-ray diffractograms, while solid dispersion exhibits sharp peaks at 25.7°, 14.8°, and 13.1°. These findings show that the characteristic drug crystalline peaks were still detectable in the solid dispersion (although at a lower intensity and in fewer numbers). This finding confirms the presence of little amount of crystalline drug in the solid dispersion. The solid dispersion, on the other hand, lacks the distinct drug peaks that correlate to drug. The number of peaks in the XRD of solid dispersion is fewer than the total of the number of peaks in ME in their pure forms. This shows that the solid dispersion reduces the crystallinity of both the medication and the polymer. A decrease in the drug’s crystallinity and the polymer's crystallinity may help to improve the drug’s solubility (21)
CONCLUSION

(MEL) solid dispersion were prepared successfully by kneading method. In the present work the combination effect of PVP K30 and cross carmelose improved solubility and dissolution rate of meloxicam. However in vivo bioavailability studies are needed to ensure whether, the results of this work can be extrapolated to the in vivo conditions.

REFERENCES

United States Pharmacopeia (USP) 30, NF28

Suraj N, Pattekari , Dr. Ajit S. Kulkarni. SOLUBILITY AND DISSOLUTION ENHANCEMENT OF A BCS CLASS II DRUG BY COGRINDING WITH SUPERDISINTEGRANTS. Indo American Journal of Pharmaceutical Research. 2231-6876.2017

Kumar S. G. V., Mishra D. N.Preparation, characterization and in vitro dissolution studies of solid dispersion of Meloxicam with PEG 6000. Pharma.Society of Jap.2006;126(8):657-664

In-Vitro Characterization and Oral Bioavailability of Organic Solvent-free Solid Dispersions Containing Telmisartan